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TAS /Park City
Mathematics Institute

The IAS/Park City Mathematics Institute (PCMI) was founded in
1991 as part of the “Regional Geometry Institute” initiative of the
National Science Foundation. In mid 1993 the program found an in-
stitutional home at the Institute for Advanced Study (IAS) in Prince-
ton, New Jersey. The PCMI will continue to hold summer programs
alternately in Park City and in Princeton.

The TAS/Park City Mathematics Institute encourages both re-
search and education in mathematics and fosters interaction between
the two. The three-week summer institute offers programs for re-
searchers and postdoctoral scholars, graduate students, undergradu-
ate students, high school teachers, mathematics education researchers,
and undergraduate faculty. One of PCMI’s main goals is to make all of
the participants aware of the total spectrum of activities that occur
in mathematics education and research: we wish to involve profes-
sional mathematicians in education and to bring modern concepts in
mathematics to the attention of educators. To that end the summer
institute features general sessions designed to encourage interaction
among the various groups. In-year activities at sites around the coun-
try form an integral part of the High School Teacher Program.
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xii IAS/Park City Mathematics Institute

Each summer a different topic is chosen as the focus of the Re-
search Program and Graduate Summer School. Activities in the Un-
dergraduate Program deal with this topic as well. Lecture notes from
the Graduate Summer School are published each year in the IAS/Park
City Mathematics Series. Course materials from the Undergraduate
Program, such as the current volume, are now being published as
part of the IAS/Park City Mathematical Subseries in the Student
Mathematical Library. We are happy to make available more of the
excellent resources which have been developed as part of the PCMI.

At the summer institute late afternoons are devoted to seminars
of common interest to all participants. Many deal with current is-
sues in education; others treat mathematical topics at a level which
encourages broad participation. The PCMI has also spawned interac-
tions between universities and high schools at a local level. We hope
to share these activities with a wider audience in future volumes.

Robert Bryant and Dan Freed, Series Editors
May, 1999



Preface

Background. These notes are based on an undergraduate course
given in July 1995 at the Park City Mathematics Institute’s summer
program on Nonlinear Waves. The undergraduate course on Lin-
ear and Nonlinear Waves consisted of a series of lectures, problem
sessions, and computer labs centered around the mathematical mod-
eling and analysis of wave phenomena. This book was written to
reflect the content and nature of the course, intermixing discussion
with exercises and computer experiments.

The intent of this book is to provide an introduction to basic ter-
minology and concepts found in mathematical studies of wave phe-
nomena. The level of this material is aimed at someone who has
completed a basic calculus sequence through multi-variable calculus,
and preferably completed a beginning course in ordinary differential
equations. Concepts from partial differential equations are introduced
as needed and no prior experience with this topic is assumed.

Companion Software. Several problems within these notes are best
analyzed with mathematical software to perform plots and visualiza-
tions of functions of two variables. Most mathematical software pack-
ages are sufficient, although selected exercises refer to particular files
which are to be used with MATLAB®. These supplemental files were
originally written for use at the PCMI summer program and have been

xiii



xiv Preface

incorporated here as exercises. Readers who use MATLAB! are en-
couraged to obtain these supplemental files through The MathWorks
anonymous FTP site at the address

ftp://ftp.mathworks.com/pub/books/knobel.

Further Reading. The following books were influential in the writ-
ing of these notes and are recommended for readers wishing to sup-
plement or expand the material presented here. The text Partial Dif-
ferential Equations for Engineers and Scientists by Stanley Farlow
provides a basic introduction to partial differential equations. Much
of David Logan’s book An Introduction to Nonlinear Partial Differ-
ential Equations pertains to the wave behavior arising from nonlinear
partial differential equations discussed here. A full collection of mate-
rial and exercises for the models of traffic flow discussed later in these
notes can be found in the textbook Mathematical Models: Mechan-
ical Vibrations, Population Dynamics, and Traffic Flow by Richard
Haberman. His text FElementary Applied Partial Differential Equa-
tions expands upon much of the material of these notes, with many
sections devoted to various aspects of wave theory. Finally, a more
advanced reference on the mathematical theory of linear and nonlin-
ear wave phenomena can be found in the book Linear and Nonlinear
Waves by G.B. Whitham. See the bibliography for these and other
suggested sources of further reading.

Acknowledgments. I am indebted to those who gave me the oppor-
tunity, support, and assistance to complete these notes. In particular
I would like to extend my appreciation to the other undergraduate
instructors at the 1995 IAS/PCMI summer program, Steve Cox and
Richard Palais, for their advice and collaboration in the design of the
PCMI course; the IAS/PCMI for giving me the opportunity to par-
ticipate in the summer program; and finally to Monty B. Taylor and
my wife Mayra for their assistance in reviewing the manuscript.

Roger Knobel

1For MATLAB product information, please contact: The MathWorks, Inc., 3
Apple Hill Drive, Natick, MA 01760, USA, Tel. 508-647-7000, Fax 508-647-7101, E-
mail info@mathworks.com, Web www.mathworks.com.
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Chapter 1

Introduction to Waves

At this time we should discuss how we hear. The
same thing happens in sounds that happens when a
stone, thrown from above, falls into a puddle or into
quiet water. First it causes a wave in a very small
circle; then it disperses clusters of waves into larger
circles, and so on until the motion, exhausted by the
spreading out of waves, dies away. The latter, wider
wave is always diffused by a weaker impulse. Now if
something should impede the spreading waves, the
same motion rebounds immediately, and it makes
new circles by the same undulations as at the cen-
ter whence it originated.

In the same way, then, when air that is struck
creates a sound, it affects other air nearby and in
this way sets in motion a circular wave of air; and so
it is diffused and reaches the hearing of all standing
around at the same time. The sound is fainter to
someone standing at a distance, since the wave of
activated air approaches him more weakly.!

Boethius, De institutione musica, 500 A.D.

From Fundamentals of Music by Anicius Manlius Severinus Boethius, translated
by Calvin M. Bower, edited by Claude Palisca, Yale University Press, 1989, p. 21.

3



4 1. Introduction to Waves

Debate continues today on whether Boethius was executed in 524
A.D. because of or in spite of his being too smart.

1.1. Wave phenomena

The notion of a wave is something familiar to everyone in one form or
another, whether it be ocean waves, sound waves, a wave good-bye,
or the “wave” at a football game. The broad use of the term wave,
however, makes it difficult to produce a precise definition of a wave.
Instead of attempting to state a single mathematical definition, we
will be guided by an intuitive point of view to identify and describe
wave phenomena.

In many cases an observed wave is the result of a disturbance
moving through a medium such as water, air, or a crowd of people. As
the disturbance is transferred from one part of the medium to another,
we are able to observe the location of the disturbance as it moves
with speed in a particular direction. Any quantitative measurement
or feature of the medium which clearly identifies the location and
velocity of the disturbance is called a signal. The signal may distort;
however, as long as it remains recognizable, it can be used to identify
the motion of the disturbance. It is on these ideas that we will base
our intuitive notion of a wave:

A wave is any recognizable signal that is transferred
from one part of a medium to another with a recog-
nizable velocity of propagation. [Whi, p. 2]

The terms medium, signal, and transferred are used in a sufficiently
broad manner to allow a wide range of interpretations of what con-
stitutes a wave.

1.2. Examples of waves

Disturbances spreading through a medium are an important phenom-
enon in diverse fields such as acoustics, biology, chemistry, electro-
magnetics, mechanics, and fluid mechanics. In observing wave phe-
nomena, one should always be able to identify a feature (signal) of
a disturbance which is transferred from one part of the medium to
another with a recognizable velocity.
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Figure 1.1. Ripples on a pond. Extreme water height signals
the location and movement of a wave.

One example commonly used to illustrate wave phenomena is the
rings radiating from a point on the surface of water, such as those
formed by throwing a stone into a still pond (see Figure 1.1). The
stone creates an initial disturbance in a small region of the pond’s
surface. Crests and troughs form as the disturbance is transferred
horizontally through this layer of water, creating rings which appear
to radiate outward from the initial disturbance. An identifiable fea-
ture of each ring is its crest, which is an extreme vertical displacement
of water. This feature is a signal which moves outward from the center
with a recognizable velocity of propagation, identifying a wave. Note
that while the wave moves horizontally across the pond, the signal
itself is formed by the vertical displacement of water.

Another phenomena which is also classified as a wave is that of
traffic backing up at a stop light (see Figure 1.2). Viewed from above,
the end of a line of stopped traffic appears to move away from the
light with a recognizable velocity as approaching automobiles reach
the end of the line. In this case the medium is automobile traffic
and the disturbance is stopped traffic. One recognizable signal of this
disturbance is the abrupt increase in traffic density (number of cars
per mile) that drivers sense when they reach the back of the line. Note
that while the individual cars are moving towards the stop light, the
signal (the end of the line) propagates away from the light.
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:
B> N> B ENER
Incoming Traffic ¢ :Stopped Traffic a

Figure 1.2. The end of a line of stopped traffic appears to
move backwards through incoming traffic.

Table 1.1. Common Wave Phenomena

Wave Phenomena  Medium Signal
Ripples on a pond  Surface layer Extreme water surface
of water height
Compression waves Elastic bar Maximum longitudinal
displacement
Sound waves Gas or liquid Pressure extrema
Shock waves Gas Abrupt change in
pressure
Traffic waves Car traffic Abrupt change in traffic
on a road density
Epizootic waves A population Extreme number of
(geographic spread susceptible to infectives
of disease) contracting a
disease

Additional examples of wave phenomena and their signals are
shown in Table 1.1. See also [BB, p. 16] for a more extensive list and
discussion of different examples of waves.



Chapter 2

A Mathematical
Representation of Waves

The purpose of this chapter is to illustrate the use of functions of two
variables as a way of representing and visualizing waves moving in a
one-dimensional medium.

2.1. Representation of one-dimensional waves

Our study will be of waves propagating in one-dimensional media
such as strings, long thin pipes, and single-lane roads. The medium
itself might move or distort in two or three dimensions; however, the
location of a wave’s signal can be described by a single coordinate
along a line.

One-dimensional waves are represented mathematically by func-
tions of two variables u(x,t), where u represents the value of some
quantitative measurement made at every position z in the medium
at time ¢t. At a fixed time ¢o, viewing u(z, ) as a function of x can
indicate the existence of a disturbance in the medium. As shown in
Figure 2.1, signals which most easily identify the presence and lo-
cation of a disturbance are extreme points or abrupt changes in the
value of u(z,tp). Examining u(x,t;) at later times t; < to < ...
indicates how the signal is moving through the medium (Figure 2.2).

7



8 2. A Mathematical Representation of Waves

>

x
—€y > -7 >
Figure 2.1. Two signals which identify the location of a dis-

turbance in a medium: an extreme point and an abrupt change
in the value of u(z, tg).

u . u - u .
T " i % f

X

Figure 2.2. A graphical representation of a disturbance mov-
ing through a medium.

Exercise 2.1. Suppose that at time ¢, the value of u at position x in
a one-dimensional medium is given by u(z,t) = e~ (@’ Snapshots
of the wave represented by this function at times ¢t =0, 1, 2,3 are

u(x,0) u(x,1) u(x,2) u(x,3)
1.0 1.0 1.0 1.0
u
0.5 05 A 05 0.5 /\
00 0.0 0.0 0.0
2 0 2 2 0 2 2 0 2 =2 0 2
X X pe X

and illustrate a wave moving right with constant speed. Modify the
function u(z,t) so that

(a) The wave moves to the left.

(b) The wave moves to the right with increasing speed.

(¢) The amplitude (height) of the wave decreases as the wave
moves to the right.
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Exercise 2.2. The Heaviside or unit step function H(z) is defined

to be
1 ifz>
H(z) = if x >0,
0 ifz<O.

(a) Sketch the graph of u(z,t) = H(z — t) in the zu—plane at
times t = 0,1, 2, 3.

(b) Use the Heaviside function to construct a function u(z,t)
which could be used to model the wave

u(x,0) u(x,1) u(x,2) u(x,3)
1.0 1.0 —— 1.0 — 1.0—
05 © os os| 05| -
0.0 —10.0 —oo| - 0.0
-4 -2 0 -4 -2 0 -4 -2 0 4 2 0
X X P X

2.2. Methods for visualizing functions of two
variables

There are several ways in which graphs can be used to give a visual
representation of a function of two variables. These visualizations of-
ten make it easier to identify the location and movement of a distur-
bance within a medium. In this section we will describe four visualiza-
tion methods: animation, slice plots, surface plots, and xt—diagrams.

Animation. At any fixed time tg, u(z,tg) is a function of one vari-
able x whose graph in the zu—plane is a profile of u along the medium
at time ¢5. By plotting the graph of u(z,t;) in the zu—plane over
a sequence of times t; < t5 < ..., one can construct a sequence of
frames. Placing these frames side-by-side or playing them quickly on
a computer creates the effect of motion (Figure 2.3).

Slice Plots. Viewing several frames of animation at once helps view
the history of the disturbance over time. By placing frames of anima-
tion in a three-dimensional coordinate system with x, ¢, and u axes,
one can look at several frames in a slice plot (Figure 2.4).
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t=0 t=1 t=2 t=3
, 10 1.0 1.0 1.0
0.5 0.5 /\ 05 0.5 /\
0.0 0.0 0.0 0.0
2 0 2 2 0 2 2 0 2 2 0 2
X X X X

Figure 2.3. Animation of u(z,t) = exp(—(z — t)?).

Figure 2.4. Slice plot view of u(x,t) = exp(—(z — t)?).

Figure 2.5. Surface plot of u(z,t) = exp(—(z — t)?).

Surface Plots. The function u(z,t) can be plotted as a surface of
points (z,t,u(x,t)) in the three-dimensional ztu coordinate system.
This is the same as taking a slice plot and letting ¢ vary continuously
over an interval of values (Figure 2.5).
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Figure 2.6. rt—plane view of u(x,t) = exp(—(z — t)?).

xt—Diagram. Looking down onto the x¢t—plane, the value of u(z,t)
at each point (z,t) can be described by shades of grey or color to indi-
cate the magnitude of u (Figure 2.6). This is called an xt—diagram
or density plot of u(z,t) and is similar to viewing a surface plot of
u(z,t) from above.

Several mathematical software packages can produce each of the
four types of plots. In MATLAB, for example, the functions movie,
waterfall, surf, and pcolor can be used to produce animation,
slice, surface, and xt—diagram plots. First compute u on a mesh of
points (z,t),

x = -10:0.1:10; t = 0:0.3:6;
[X,T] = meshgrid(x,t);
u = exp(-(X-T)."2);
The function u can then be visualized by animation,
M = moviein(length(t));
for j=1:length(t),
plot(x,u(j,:)), M(:,j)=getframe;
end;
movie (M)

slice plot,

waterfall(x,t,u)
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surface plot,
surf(x,t,u)

and rt—diagram plot,
pcolor(x,t,u).

Alternatively, the companion MATLAB software for this book (see
page xiii) contains three files to perform animations (wvmovie), slice
plots (wvslice), and surface plots (wvsurf). To produce an xt—plane
diagram, set the viewpoint fields in the graphical interface wvsurf to
phi=90 and theta=0.

In Maple V®, the four types of plots can be constructed by
first defining u(z,t) and then loading the plots package at the Maple
prompt > by

>u = (x,t) -> exp(-(x-t)"2);
> with(plots):

The function u can then be visualized by animation,
> animate(u(x,t), x=-10..10, t=0..6);
slice plot,

> slices := {seq([x,t,u(x,t)], t={0,2,4,6})}:
> spacecurve(slices, x=-10..10);

surface plot,
> plot3d(u(x,t), x=-10..10, t=0..6);
or rt—diagram
> densityplot(u(x,t), x=-10..10, t=0..6);

Exercise 2.3. Using computer software, reproduce the animation
represented by Figure 2.3 and the plots shown in Figures 2.4-2.6
for the function u(z,t) = e~(@=" = exp(—(z — t)2).

Exercise 2.4. View the function u(z,t) = e~(@=t)? 4 e=(@+)? by
animation, slice plots, surface plots, and an rt—diagram.



Chapter 3

Partial Differential
Equations

3.1. Introduction and examples

Our mathematical description of waves will be through functions of
two variables u(zx,t). If we think of u as being the value of some
measurement of a one-dimensional medium at position = and time ¢,
then partial derivatives of u with respect to  and ¢ have important
physical meanings as rates of change. Scientific principles or cbser-
vations about how u changes can often be expressed as an equation
which relates u and its derivatives.

A partial differential equation (PDE) for a function u(z,t)
is a differential equation that involves one or more of the partial
derivatives of u with respect to z and t. We will usually denote
the partial derivatives of u by

du Ou 0%u

Ut = ‘a*t, Uz = 5;, Uyt = _—8t8:c’

Partial differential equations are a fundamental mathematical tool for
modeling physical phenomena which change over time. The partial
differential equations in the following examples all possess solutions
illustrating waves and will be discussed in more detail in later sections.

13



14 3. Partial Differential Equations

Example 3.1. Suppose that pollutant is spilled into a fast moving
stream. At a position x downstream from the spill, let u(z,t) denote
the concentration of pollutant in the water passing by at time ¢. Prior
to the arrival of the polluted water, the value of u(z,t) at position x
is zero. As the pollutant carried by the stream passes by position z,
the value of u(z,t) increases and then decreases back to zero. The
effect on the value of u due to the movement of the stream is called
advection and is modeled by the advection equation

us + cuy, = 0.

The advection equation is also called the transport or convection equa-
tion.

Example 3.2. When pollutant is spilled into a still channel of water,
the pollutant is no longer transported to other parts of the channel by
the movement of water. In this case the main process for spreading the
pollutant through the channel is diffusion. The diffusion equation

U = Dugy,

is derived as a basic model of this process. The spread of heat through
a medium can also be a diffusive process and so the diffusion equation
is also called the heat equation.

Example 3.3. The linearized Burgers equation
Ut + cuy = Dugy

is an equation which illustrates a combination of the transport and
diffusion processes from the previous two examples. The Burgers
equation

U + Uty = Dug,

is a fundamental equation from fluid mechanics that combines a dif-
ferent advection process with diffusion. When D = 0, the Burgers
equation becomes the inviscid Burgers equation

us + uuy =0,

which provides a classic example of shock waves.
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Example 3.4. The motion of a plucked guitar string is nearly per-
pendicular to the length of the string. The wave equation

2
Ut = C Ugy

is used to model the amount of displacement u(z,t) at position x
along the string at time ¢. Calling this equation the wave equation is
not meant to suggest that this is the only equation which describes
wave behavior.

Example 3.5. The Korteweg-deVries equation
Ut + Uz + Ugge = 0

was derived in 1895 by Korteweg and deVries to model waves on the
surface of relatively shallow water. Of particular interest are solutions
of this equation called solitary waves or solitons.

3.2. An intuitive view

The examples of partial differential equations given in the previous
section are all derived from fundamental scientific principles. Many of
these equations can be understood from an intuitive point of view by
thinking of the physical and geometrical meanings of partial deriva-
tives.

At a fixed position z in the medium, the value of u;(z,t) gives the
rate at which u is changing with respect to time. A positive value of
u¢(z,t) indicates that at position , u is increasing as time increases.
A negative value of u;(z,t) indicates that u is decreasing at position
x as time increases (see Figure 3.1). In applications where u(z,t)
denotes a displacement at position z, u;(x,t) and uy(z,t) have the
particular interpretation of velocity and acceleration.

At a fixed time ¢, the values of u,(x,t) and u,,(x,t) provide
information about the slope and concavity of the graph of u(z,t) as
a function of z. In particular applications these represent quantities
such as flux and stress.

Example 3.6. Suppose that u(z,t) represents the temperature u at
position x along a metal bar at time ¢. A snapshot of the temperature
profile of the rod at time ¢ is represented by the graph of u(z,t) as a
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L
. @
/l

+
Xo Xy

Figure 3.1. With respect to time, the value of u is increasing
at position zg (u¢(zo,t) > 0) and decreasing at position z;
(u¢(z1,t) < 0).

/i/l_\l\t\ U= Dug >0
e P

NI

u,=Du, <0

Q ) x

Figure 3.2. According to the heat equation, the change in
temperature u at each point z depends on the concavity of
the temperature profile at that instant.

function of x (see Figure 3.2). If the rod’s temperature distribution
is governed by the heat equation

us = Dug; (D > 0 constant),

then the rate at which the temperature changes at position x is pro-
portional to the concavity of the temperature profile at xz. Since
D is positive, the rate of change u;(x,t) at position z and the con-
cavity uzy(z,t) will have the same sign. In particular, portions of
the temperature profile u(z,t) which are concave up (uze(z,t) > 0)
correspond to points on the rod whose temperature will increase
(u¢(z,t) > 0). Portions of the temperature profile which are con-
cave down correspond to points on the rod whose temperature will
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Figure 3.3. Initial profile u(x,0) for Exercise 3.7.

decrease. The larger (smaller) the magnitude of u,.(z,t), the greater
the rate of increase (decrease) of u at position x (see Figure 3.2).

Exercise 3.7. Suppose the profile of u(z,t) at time ¢ = 0 is given
by the graph shown in Figure 3.3. Assuming u(z,t) satisfies the
advection equation u; + u, = 0,

(a) Identify the points x in Figure 3.3 for which the value of u
will decrease shortly after time ¢t = 0.

(b) Identify the points = in Figure 3.3 for which the value of u
will increase shortly after time ¢ = 0.

(c) Based on (a) and (b), draw a rough sketch of how the profile
of u(z,t) might look at a time ¢ shortly after ¢t = 0.

Exercise 3.8. Suppose a string is stretched horizontally and then
plucked. Let u(z,t) represent the vertical displacement of the string
at position z and time ¢.

(a) Give physical and graphical interpretations of the partial
derivatives u;(x,t) and uy(x,t). Give graphical interpreta-
tions of u(z,t) and ugz,(z,1t).

(b) Suppose u(z,t) satisfies the wave equation uy = au,, where
a is a positive constant. What is an interpretation of the
wave equation in terms of acceleration and concavity?

3.3. Terminology

Partial differential equations are described and classified using a num-
ber of different terms. While there is no classification scheme in which
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one type of equation is more likely to possess wave-like solutions than
another, there is some general terminology which we will use.

The order of a partial differential equation is the order of the
highest partial derivative appearing in the equation. First and second
order equations are very common in applications since first and second
derivatives have fundamental physical meanings.

Example 3.9. The Burgers equation u; + uu, = Dug, (D > 0 con-
stant) is second order. The inviscid Burgers equation u; + uu, =0 is
first order.

A first order partial differential equation for u(z,t) is called first
order linear if it can be written in the form

(3.1) a1us + ety +bu = f

where a; and a3 are not both zero, and a1, as, b, and f are constants
or functions of x and ¢ (but do not depend on u). If a first order
partial differential equation cannot be written in this form, then it is
called nonlinear.

A second order partial differential equation for u(z,t) is called
second order linear if it can be written in the form

(3.2) Q11U + 012Ut + G22Uzg + b1Uy + bougy +cu = f

where a1, a2, and agy are not all zero, and a,;, b;, ¢, and f are
constants or functions of x and t. If a second order equation cannot
be put into this form, then it is called nonlinear.

The linear equations (3.1) and (3.2) are called homogeneous if
the term f = 0; otherwise, they are said to be nonhomogeneous.
Nonlinear equations are generally not classified as homogeneous or
nonhomogeneous.

Example 3.10. The Burgers equation u; + uu, = Du,, (D > 0
constant) is nonlinear because the term uu, is not in the form au,
where a is independent of u. The linearized Burgers equation u; +
cuy = Dug, (¢, D constants) is linear and homogeneous since it can
be rewritten in the form (3.2) as

us + cugy — Dug, = 0.
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Exercise 3.11. Give an example of a first order nonlinear partial
differential equation for u(z,t).

Exercise 3.12. For each of the following partial differential equa-
tions, (i) find its order and (ii) classify it as linear homogeneous, linear
nonhomogeneous, or nonlinear. Assume c is a nonzero constant.

(a) us+cuy,=0 Advection equation

(b) urtcuy, =et Advection with source term

(€) up = Uz, Wave equation in one dimension
(d) ug —uzp +u=0 Klein-Gordon equation

(e) ugt — ugy +sin(u) =0  Sine-Gordon equation

(f)  ws+uuy +ugee =0  Korteweg-deVries (KdV) equation
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Part 2

Traveling and Standing
Waves
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Chapter 4

Traveling Waves

4.1. Traveling waves

One fundamental mathematical representation of a wave is
u(z,t) = f(z - ct)

where f is a function of one variable and c is a nonzero constant. The
animation of such a function begins with the graph of the initial profile
u(z,0) = f(x). If ¢ is positive, then the profile of u(z,t) = f(z — ct)
at a later time ¢t is a translation of the initial profile by an amount ct
in the positive z direction. Such a function represents a disturbance
moving with constant speed c:

Similarly, u(z,t) = f(z — ct) with ¢ < 0 represents a disturbance
moving in the negative = direction with speed |c|. In either case, the
profile at each time ¢ does not distort and remains a recognizable
feature of a wave as it is translated along the x—axis.

Waves represented by functions of the form u(z,t) = f(z — ct)
are called traveling waves. The two basic features of any traveling
wave are the underlying profile shape defined by f and the speed |c|

23



24 4. Traveling Waves

at which the profile is translated along the x—axis. It is assumed that
the function f is not constant and c is not zero in order for u(z,t) to

represent the movement of a disturbance through a medium.

Example 4.1. The function u(z,t) = ¢~ (=50 represents a travel-
ing wave with initial profile u(z,0) = e~*" moving in the positive z
direction with speed 5. Four frames of the animation of this wave are

1.0 1.0 1.0 1.0
“ 05 A 05 ’\ 0.5 ’\ 0.5 ’\
0.0 0.0 0.0 0.0

=20 0 20 -20 0 20 -20 0 20-20 0 20

Example 4.2. The function u(x,t) = cos(2z + 6t) can be seen to
represent a traveling wave by writing it as u(z,t) = cos[2(z + 3¢)].
The initial profile u(z,0) = cos(2z) is being displaced in the negative
z direction with a speed of 3.

A traveling wave solution of a partial differential equation is a
solution of the differential equation which has the form of a traveling
wave u(z,t) = f(x — ct). Finding traveling wave solutions generally
begins by assuming u(z,t) = f(z — ct) and then determining which
functions f and constants c yield a solution to the differential equa-
tion.

Example 4.3. Here we will find traveling wave solutions of the wave
equation

Uy = QUg,, a > 0 constant.

Assuming that u(z,t) = f(x — ct), the chain rule gives
w(z,t) = [f'(z-ct)](z-ct)=—cf'(z-ct),
ug(z,t) = [f'(z=ct)](z—ct)e = f'(x—ct).

Applying the chain rule a second time

up(z,t) = [—cf"(z—ct)](z —ct)e = f"(z - ct),
Uzpz (T, 1) [f"(x = ct)](z - ct)z = f"(z = ct)
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and substituting into the wave equation implies
Af'(x—ct) = af’(x - ct).
Letting z = « — ct and rearranging shows that we need to find ¢ and
f(2) so that
(€ —a)f"(z) =0
for all z.

One possibility is for ¢ = a. In this case f can be any twice
differentiable function; taking any such nonconstant f and ¢ = £+/a,
the two functions

u(z,t) = f(x - Vat), u(z,t) = f(z+ Vat)

are traveling wave solutions of the wave equation. Special examples
include u(z,t) = sin(x — /at), u(z,t) = (z + at)?, and u(z,t) =
e~(@=va)?  Another possibility is for f” = 0, in which case f must
be a linear function f(z) = A + Bz. The coefficient B should not be
zero to ensure that the profile f is not constant. In this case

u(z,t) = A+ B(x — ct)
is a traveling wave solution of the wave equation for any choice of
A,B,c as long as B # 0 and c # 0.
Exercise 4.4. Find traveling wave solutions of the following equa-

tions.

(a) The advection equation u; + au; = 0 where a is a nonzero
constant.

(b) The Klein-Gordon equation u = aug; — bu where a and b
are positive constants.

Exercise 4.5. Consider the Sine-Gordon equation uy = Uz, — sin u.

(a) Show that the profile shape f of a traveling wave solution
u(z,t) = f(z — ct) of the Sine-Gordon equation must satisfy
the differential equation

(1= ¢*)f"(2) = sin(f(2))

where z =z — ct.
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(b) The differential equation in part (a) is a second order nonlin-
ear equation. Since this equation does not explicitly involve
f'(2), it can be reduced to a first order equation with the
following technique. Multiply both sides of the differential
equation in part (a) by f’(z) and integrate both sides with
respect to z to show that

(1-¢*) (f'(2)" = A~ 2 cos(f(2))
where A is an arbitrary constant of integration.

(c) In the special case A =2 and 0 < ¢ < 1, show that the first
order equation in part (b) can be rewritten in the form

() = 2 sin? (f(2)/2).

1—c2

Then verify that

f(2) = 4arctan [exp (71{—_65”

is a solution of this equation. Thus for any speed 0 < ¢ < 1,

u(z,t) = f(x — ct) = 4arctan [exp (%)]

is a traveling wave solution of the Sine-Gordon equation.

Exercise 4.6. The previous exercise shows that

1) = st o (2L )

is a traveling wave solution of the Sine-Gordon equation for any speed
0 < ¢ < 1. Animate this traveling wave three times using three
different choices of ¢. How does the profile of the traveling wave
change with ¢?

4.2. Wave fronts and pulses

A sudden change in weather occurs when a cold front passes through
a region. The temperature at points ahead of the front appear to be
at a relatively constant k; degrees, while behind the disturbance the
temperature has dropped (sometimes by more than 30°F) to a new
temperature k;. On a weather map, the sudden drop in temperature
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Figure 4.1. The profile of a wave front at time ¢.

is a recognizable feature which identifies the location and movement
of this disturbance, so a cold front is an example of a wave.

A traveling wave such as the one profiled in Figure 4.1 is an
example of a wave front. A traveling wave represented by u(z,t) is
said to be a wave front if for any fixed ¢,

u(z,t) — k1 as x — —oo, u(zx,t) — ky asx — 00

for some constants k; and k2. In general, the values k; and ks are not
necessarily the same. In the particular case that the measure of u is
approximately the same on both sides of the disturbance (k1 = k3),
then the wave front is called a pulse. A pulse disturbance temporarily
changes the value of u at position z before it settles back to its original
value.

Example 4.7. The traveling wave u(z,t) = e=(@=50% i Example 4.1

is a pulse since limy_ 0o e~®=5° = 0 and lim,_, _ e~ (=5 = 0.
The traveling wave u(z,t) = cos(2z + 6t) in Example 4.2 is not a
wave front or a pulse since lim,_, o u(x,t) does not exist.

Exercise 4.8. Is the traveling wave in Exercise 4.6 a wave front,
pulse, or neither?
4.3. Wave trains and dispersion

The traveling wave u(z,t) = cos(2z + 6t) from Example 4.2 is not a
wave front or pulse, but rather an example of another type of wave.
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Figure 4.2. A wave train.
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Figure 4.3. One cycle of a wave train.

A traveling wave which can be written in the form
u(z,t) = Acos(kx —wt) or u(zx,t) = Acos(kx + wt)

where A # 0, k > 0 and w > 0 are constants is called a wave train.
By rewriting u(z,t) as

u(z,t) = Acos [k (x - %t)]

one can see these are in fact traveling waves with profile shape f(z) =
A cos(kz) moving with speed ¢ = w/k (see Figure 4.2). More gener-
ally, wave trains are represented as u(z,t) = f(kz — wt) where f(2)
is a periodic function.

In a wave train u(z, t) = A cos(kz—wt), the number k is called the
wave number and represents the number of cycles of this periodic
wave that appear in a window of length 27 on the x—axis (Figure 4.3).
The number w is called the circular frequency and represents the
number of cycles of the wave that pass by any fixed point = on the
r—axis during a time interval of 2.
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A partial differential equation may have solutions which are wave
trains, but not necessarily for every possible wave number k or fre-
quency w. To find which wave numbers and frequencies are permit-
ted, one can substitute the form of a wave train such as u(x,t) =
A cos(kz — wt) into the differential equation and reduce it to a rela-
tionship between k and w. This relationship is called a dispersion
relation and indicates which values of £ and w may be selected in
order for u(z,t) to be a wave train solution.

Example 4.9. Here we will look for wave train solutions of the form
u(z,t) = Acos(kz — wt) for the advection equation

us + aug, = 0.

Computing the partial derivatives u; and u, of this wave train form
shows u(z,t) will be a solution of the advection equation if

wAsin(kz — wt) + a [-kAsin(kz — wt)] = 0,
or
A(w — ak)sin(kz — wt) = 0.

The dispersion relation here is w = ak. Thus for any wave number k,
u(z,t) = cos[k(x — at)] is a wave train solution traveling to the right
with speed ¢ = a.

Example 4.10. The Klein-Gordon Equation uy; = aug, — bu (a,b
positive constants) models the transverse vibration of a string with
a linear restoring force. The wave train u(z,t) = A cos(kz — wt) is a
solution of this equation if

—w?Acos(kz — wt) = a [—k2A cos(kx — wt)] — bA cos(kz — wt)
or
A(w? — ak? — b) cos(kzx — wt) = 0.

Thus u(z,t) = A cos(kz — wt) is a solution of the Klein-Gordon equa-
tion if k and w satisfy the dispersion relation w? = ak? +b. When
w = Vak? + b, the wave train solution takes the traveling wave form

2
U(-T,t)=ACOS<kl'— ak2+bt> =ACOS [k (1:_ ak_TQ.h—bt):l
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with speed

ak?+b b ab
(41) C=\/T=\/a+ﬁ:\/a+a7——b'

There is a fundamental difference between the previous two ex-
amples. In the advection equation, all wave train solutions travel
with the same speed ¢ = a. In the Klein-Gordon example, equation
(4.1) shows that wave trains with higher frequency w travel with lower
speed c. A partial differential equation which has wave train solutions
is said to be dispersive if waves trains of different frequencies w prop-
agate through the medium with different speeds. The Klein-Gordon
equation is dispersive while the advection equation is not.

Exercise 4.11. Suppose that waves in a medium are governed by the
Klein-Gordon equation. Based on (4.1), what are the possible speeds
that a wave train can move through the medium? In particular, how
fast and how slow can a wave train move through the medium?

Exercise 4.12. In each of the following partial differential equa-
tions, find the dispersion relation for wave train solutions of the form
u(z,t) = Acos(kx —wt), then determine if each equation is dispersive
or not. Assume a is a positive constant.

(a) ug = aug, The wave equation
(b) wui + augzrr =0 The beam equation
(¢) wu¢+ug 4+ ugzr =0 The linearized KdV equation

Exercise 4.13. It is sometimes easier to find a dispersion relation
using the complex wave train

u(z,t) = cos(kx — wt) + isin(kz — wt) = pilkz—wt)

where i is the imaginary unit. In this case u,(z,t) = ike!(ke—wt)

and w;(x,t) = —iwe'**=“t) Use this form of a wave train to find
a dispersion relation for the following partial differential equations.
Assume a and d are positive constants.

(a) wu¢+ au, = duy, The linearized Burgers equation

(b) dus+uz=0 The Schrédinger equation

(¢) uy = aug, The wave equation



Chapter 5

The Korteweg-deVries
Equation

1 was observing the motion of a boat which was rap-
idly drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped — not so the mass of
water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form
of a large solitary elevation, a rounded smooth and
well-defined heap of water which continued its course
along the channel apparently without change of form
or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half
in height. Its height gradually diminished, and after
a chase of one or two miles I lost it in the windings
of the channel.!

J.S. Russell, 1844.

! John Scott Russell, Report on waves, Report of the 14th Meeting of the British
Association for the Advancement of Science, 1844, pp. 311-390.
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5.1. The KdV equation

In 1834, J.S. Russell observed the phenomena of a large bulge of water
slowly traveling along a channel of water. The ability of this water
wave to retain its shape for such a long period of time was quite
remarkable and led Russell to study this disturbance by conducting
numerous detailed experiments. He later came to call this phenomena
a Wave of Translation, highly suggestive of a traveling wave. Russell’s
work on the Wave of Translation is now considered the beginning
study of what are now called solitary waves or solitons.

Russell’s experiments and observations drew the attention of no-
table scientists such as Boussinesq, Rayleigh, and Stokes. In 1895,
Korteweg and deVries derived a partial differential equation to model
the height of the surface of shallow water in the presence of long
gravity waves [KdV]. In these waves, the length of the wave is large
compared to the depth of the water, as was the case in Russell’s Wave
of Translation. The differential equation of Korteweg and deVries,

Ui + (a1 + a2U)U; + a3Upzr =0, az,a3 #0,

is a third order nonlinear equation now known as the Korteweg-
deVries equation or KdV equation. A substitution of u = a; + axU
and a scaling of the independent variables x and ¢ results in the re-
“duced form of the KdV equation,

(5.1) U + Uly + Uppy = O.J

For a more complete reading on the history of solitons, the KdV
equation, and other fundamental equations from which solitons arise,
see the monograph Solitons in Mathematics and Physics by Alan C.
Newell [New].

5.2. Solitary wave solutions

In this section we will look for traveling wave solutions of the reduced
KdV equation (5.1). The solutions that will be found are called soli-
tons and model the wave phenomena observed by Russell.

In the spirit of a “heap” of water forming a Wave of Translation,
we will look for a traveling wave solution u(z,t) = f(z — ct) in the
form of a pulse, where ¢ > 0, and f(z), f'(z), and f”(z) tend to 0
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X

Figure 5.1. A pulse profile in which u(z,t), uz(z,t), and
uzz(z,t) approach 0 as x — +oo.

as z — Foo (see Figure 5.1). Substituting u(z,t) = f(z — ct) into
the KdV equation u; + uu,; + gz, = 0 forms a third order nonlinear
ordinary differential equation for f(z),

_cfl+ff/+f/// =0
This particular equation can be integrated once to get
—cf+3f°+f"=a

where a is a constant of integration. From the assumptions that f(z)
and f”’(z) — 0 as z — o0, the value of a is zero. Multiplying by f’

—eff 4 L2+ =0
and integrating again results in the first order equation

~Left 4 LS4 3R =,
Since f(z),f'(z) — 0 as z — oo from the form of the pulse, the
constant of integration b is zero. Solving for (f)? gives

3(f)° =Bc— f)f

From here we will require 0 < f(z) < 3c in order to have a positive
right-hand side; taking the positive square root yields

V3

V3c—-ff

To integrate the left hand side, make the rationalizing substitution
9° = 3c — f; substituting f = 3c — g% and f' = —2¢g¢’ results in

2V3

3c— g2

=1

g =-1
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UM

Amplitude 3¢

Figure 5.2. A profile of a solitary wave solution of the KdV equation.

By the method of partial fractions, integration of both sides with
respect to z gives

V3c+g
(\/_—g) ez +d

for some constant of integration d. Solving for g yields

9(z) = V3c Z}P))E:ﬁz ::_- 3) ; 1 ~V3c tanh [1(y/cz — d)],
and then computing f = 3c — ¢° results in
f(z) = 3csech® [L(y/ez — d)] .
Recall that sech(z) = 1/ cosh(z), where cosh(z) = 1(e* + e~*).

Since the arbitrary constant d is simply a shift of the shape

f(z) = 3csech’ [3y/cz],

we can get a good idea of what this traveling wave looks like with
d = 0. The resulting traveling wave solution to the KdV equation is

(5.2) u(z,t) = 3c sech? [?(x - ct)] .

A profile of this wave is shown in Figure 5.2. This pulse is called a
solitary wave or soliton.

Russell observed in his experiments that Waves of Translation
with greater height moved with a greater velocity. This is borne
out in the solution (5.2) of the KdV equation by observing that the
amplitude of the wave is 3c, three times the wave speed c.
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Exercise 5.1. Find a pulse traveling wave solution of the modified
KdV equation u; + u?uy +uzze = 0. This equation appears in electric
circuit theory and multicomponent plasmas [IR].

Exercise 5.2. Since the KdV equation is nonlinear, the sum of two
of its solutions is not necessarily another solution. To illustrate this,
let v and w represent two solutions of u; +uts, + Uy = 0. Show that
u = v + w is a solution only when the product vw does not depend
on .

Exercise 5.3. (Interacting Solitary Waves) Suppose k; and ko are
positive numbers and set

ui(z,t) = exp(kdt—kix),

w(z,t) = exp(kit - ko),
A = (k1 —k2)?/(ky + k2)2
Let
w=12 k%ul + ngQ + 2(k1 - k2)2u1u2 + Aulu2(k%’llq + kgul)

(14 ug +ug + Aujug)?
This is a solution of u; + uuy, + Uz, = 0 derived using a method
described in [Whi, pp. 580-583]. Taking k1 = 1 and ky = 2, ani-
mate u(z,t) for —10 < = < 10 and time —10 < ¢t < 10 to observe
the behavior of this double soliton solution. If animating using the
script wvmovie provided with the companion MATLAB software (see
page xiii), setting the u(x, t) field to kdv2(x,t) will view this solution.
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Chapter 6

The Sine-Gordon
Equation

In this chapter we will derive the Sine-Gordon equation
Ugp — Ugpy +Sinu =0

as a description of a mechanical transmission line, and look for trav-
eling wave solutions of this equation.

6.1. A mechanical transmission line

In the late 1960’s, A.C. Scott constructed a mechanical analogue of
an electrical transmission line. This device consists of a series of pen-
dula connected by a steel spring and supported horizontally by a thin
wire (Figure 6.1). Each pendulum is free to swing in a plane perpen-
dicular to the wire, however in doing so, the spring coils and provides
a torque on the two neighboring pendula. This interaction between
adjacent pendula permits a disturbance in one part of the device to
propagate, mechanically transmitting a signal down the line of pen-
dula. If a pendulum at one end of the device is disturbed slightly, then
the transmitted disturbance results in a small “wavy” motion (Fig-
ure 6.2). A more dramatic effect occurs if a single pendulum at one
end is quickly turned one full revolution around the wire (Figure 6.3).

37
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i

Figure 6.1. Pendula attached to a horizontal spring.

Figure 6.2. A small disturbance moving down the pendulum line.

6.2. The Sine-Gordon equation

In [Sc, pp. 48-49], the Sine-Gordon equation

(6.1) Iutt — Uy, + sinu = OJ

is derived as a continuous model for describing motions of the pendula,
where u(z,t) represents the angle of rotation of the pendulum at
position x and time t. The Sine-Gordon equation also arises in the
study of superconductor transmission lines, crystals, laser pulses, and
the geometry of surfaces. See [Sc, p. 250] for references.

We will now follow Scott’s derivation of the Sine-Gordon equation
(6.1) from a system of ordinary differential equations which models
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Figure 6.4

the angles of rotation of the pendula. Here we will assume that each
pendulum has mass m and length [, and the pendula are equally
spaced along the spring with a separation distance of Az. Let u;(t)
measure the angle of rotation of the it» pendulum at time ¢, with
u; = 0 being the down position (Figure 6.4).
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. mg cos(u;)

F=mg
. mg sin(u;)

Figure 6.5

The mathematical model for the motion of the pendula is based
on Newton’s second law of motion in rotational form,

2

2w
(6.2) I 7&% = net torque acting on the i* pendulum

where I is the moment of inertia of the pendulum, I = mi?, and
torque is the measure of the turning effect of a force. In this case
there are three torques which will be taken into account—the torque
due to gravity, the torque due to the twisting of the spring coiled
between pendula i and (i — 1), and the torque due to the spring
between pendula ¢ and (i + 1).

Looking first at torque due to gravity, the gravitational force
acting on the i* pendulum tries to rotate the pendulum downward.
As shown in Figure 6.5, the resulting torque is £ (mgsin u;)(l), where
mgsinu; is the amount of gravitational force perpendicular to the
pendulum, [ is the distance from the pivot point to the mass, and g
is the acceleration due to gravity. Figure 6.5 also indicates the sign
(direction) of the torque. If the pendulum has swung to the right
(0 < u; < m/2), then sinu; > 0. The gravitational torque, however,
will try to rotate the pendulum back to the left in the negative u;
direction. If the pendulum has swung to the left (—7/2 < u; < 0),
then sin u; < 0. The gravitational torque, however, will try to rotate
the pendulum back to the right in the direction of positive u;. The
portion of the net torque due to gravity is then —mgl sin u; to account
for the correct sign.
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The next torque to be accounted for is the turning effect due to
the portion of the spring between the i and (i + 1) pendula. Intuition
suggests the strength of this turning effect depends on three major
factors—the amount of twisting of the spring, the length of that part
of the spring, and the stiffness of the spring’s material. One model
for this torque is
Ui+l — Uy
—
where u; 41 —u; is the amount of twist in the part of the spring between
the ¢ and (i + 1) pendula, Az is the length of that part of the spring,
and K > 0 is a spring constant depending upon the spring’s material.
If u;41 — u; =0, then both ends of that segment of spring have been
rotated the same amount and so no twisting between pendula i and
(i + 1) has taken place. Large values of u;+1 — u; correspond to one
end of this segment of spring being rotated much more than the other,
coiling the spring and resulting in a large torque on the it* pendulum.
Long sections of spring (large Ax) result in smaller torques since there
are more coils of the spring to absorb twisting of the spring.

Spring torque = K

Similarly, the torque applied to the i** pendulum due to the twist-
ing of the spring between the ¢ and (i — 1) pendula will be assumed
to be

(ui—1 _Ui).

K Az

Putting the gravitation and spring torques in Newton’s second
law (6.2) results in

Pu; g it = 2u; + ui—1
a2 Az

Now suppose the number of pendula is increased while decreasing
their mass in such a way that m/Axz — M as Az — 0. This forms
a continuous “sheet” of material with mass density M. Let u(x,t)
denote the angle of rotation of this continuous sheet at position z
and time ¢. Dividing (6.3) by another factor of Az gives

(6.3) mi?

— mglsinu;.

2 72
ml® du; Ujr1 — 2u; +ui—1 mgl
L (gias L ——lq—-51nu,~,

Az di? (Az)? Az
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and so taking the limit Az — 0 results in
M1P?uy = Kug, — Mglsinu.

Setting A = MI? and T = Mgl puts this in the form of the Sine-
Gordon equation

(6.4) | Auy — Kuy, + Tsinu = 0. |

Exercise 6.1. The more general Sine-Gordon equation (6.4) can be
reduced to the form (6.1) through a change of independent variables.
Suppose u(z,t) is a solution of

Auyt — Kugy + T'sinu = 0.

Let £ and 7 be a new set of independent variables formed by the
scaling £ = ax and 7 = bt. Letting U(,7) be defined by U(¢, 1) =
u(z,t), find scaling constants a and b so that U(§,7) is a solution of

Urr — Uge +sinU = 0.

Exercise 6.2. The Sine-Gordon equation us — Uy, + sinu = 0 is a
special case of the more general form us —uy, +V'(u) = 0 where V(u)
represents potential energy. What is the potential energy function
V(u) for the Sine-Gordon equation?

6.3. Traveling wave solutions

In this section we will look for traveling wave solutions of the Sine-
Gordon equation (6.1),

Ut — Uz + sinu = 0.

Letting u(z,t) = f(z — ct) and substituting into the Sine-Gordon
equation gives

Ef' — f" +sinf =0.
The equation formed after multiplying by f/,
(= 1f"f + (sinf)f =0,
can be integrated to produce the first order equation

(= 1)(f)?* —cos f =a.
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Additional conditions are needed to find the constant of integra-
tion a. With an eye towards the pendulum problem, we will look for
a solution f which satisfies f(z) — 0 and f'(z) — 0 as z — oo to
approximate the notion of undisturbed pendula ahead of a moving
disturbance. In this case a = —1, so

() = 1y 1 = cos f) = 1 sin(/2)

1—¢2
Here the speed c¢ of the traveling wave will need to satisfy ¢ < 1

to ensure that the right hand side is positive. One solution of this
equation is (see Exercise 4.5)

f(z) = darctan [exp (—ﬁ)] :

resulting in the traveling wave solution

u(z,t) = darctan [exp (-%)] .

Four frames of animation of this traveling wave are shown in Fig-
ure 6.6. Since u(z,t) — 0 as ¢ — oo and u(z,t) — 27 as * — —0o9,
this traveling wave is a wave front. Ahead of the wave front the pen-
dula are in their undisturbed state (angle u near 0) while behind the
wave front the pendula are near an angle of 27, indicating that these
pendula have rotated completely around the horizontal spring exactly
once.

Exercise 6.3. Locate a traveling wave solution u(z,t) = f(x — ct)
of uy — Uyy + sinu = 0 where f(z) — 7 and f'(z) — 0 as z — oo.
In terms of the pendula problem, what is a physical interpretation of
this solution?

Exercise 6.4. Verify by direct substitution that the following is a
solution of uy — Uy, +sinu = 0:

ccosh(z/v1 — c?)

Animate this solution with ¢ = 1/2, —20 < z < 20, and —50 < t < 50.
This solution is called a particle-antiparticle collision [PS].

u(z,t) = 4arctan [ sinh(ct/V1 — ¢7) } .
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Figure 6.6. A Sine-Gordon traveling wave.

Exercise 6.5. If the motion of the pendula sheet is small (angle u
remains close to zero), then one may make the approximation sinu =~
u in the Sine-Gordon equation (6.4). This results in a linear equation,

Auy — Kugy + Tu = 0.
This equation is called the Klein-Gordon equation.

(a) Find all traveling wave solutions for this linear equation.

(b) If the motion of the pendula is indeed small, then u must
remain bounded. Which speeds ¢ admit a traveling wave
solution which is bounded?

(¢) The bounded traveling wave solutions from part (b) are wave
trains. Is the Klein-Gordon equation dispersive? In particu-
lar, do wave train solutions with high frequency travel with
faster, slower, or same speed as solutions with low frequency?

(d) Show that there is a cutoff frequency wp such that solutions
with frequency w < wy are not permitted.



Chapter 7

The Wave Equation

In this chapter the wave equation uy; = c>u,, is introduced as a model
for the vibration of a stretched string.

7.1. Vibrating strings

The wave equation uy;; = c?ug, is a fundamental equation which
describes wave phenomena in a number of different settings. One
basic use of the wave equation is to model small vibrations, such as
those of a plucked guitar string. In this section, assumptions are
made about the way in which such a string vibrates. In the following
section, these assumptions are used to derive the wave equation.

Suppose a string is initially stretched between two posts with the
equilibrium position of the string lying along the x axis. After the
string is plucked, let u(x,t) measure the displacement of the string at
position x and time ¢ (Figure 7.1). The values of u;(x,t) and uy(z,t)
represent the vertical velocity and acceleration of the point on the
string at position . The derivative u,(x,t) measures the slope of the
string at position z.

The way in which a string vibrates depends on properties of the
string as well as any forces that are present. The following assump-
tions about a string will be used in the derivation of the wave equation.

o Uniform string. The string has a constant density p (mass
per unit length).

45
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Figure 7.1. At time ¢, u(z, t) is the displacement of the string
at position z.

Planar vibrations. The string remains in a plane as it vi-
brates.

Uniform tension. A flexible connector such as a piece of rope
or string exerts a force only in a direction parallel to itself.
Such a force, called tension, acts as a pull on whatever is
attached to the end of the string. We will assume that our
vibrating string has constant tension—each piece of the string
pulls on its neighboring segments of string with the same
magnitude of force T. The direction of this force, however,
varies and is tangent to the string at each point.

No other forces. The only force present which affects the mo-
tion of the string is tension. Gravitational, frictional, mag-
netic, and other external forces will be omitted for now.

Small vibrations. As the string vibrates, the slope u,(x,t) at
each point of the string remains small:

X

7.2. A derivation of the wave equation

The wave equation will now be derived by applying Newton’s Second
Law of Motion to a piece of the string. Let S represent the segment of
the string between = and x + Ax, where Az > 0 is small (Figure 7.2).
Thinking of this small piece of string as a body which moves only in
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Figure 7.2. A piece S of the string.

the vertical direction, Newton’s Second Law gives
(7.1) (Mass of S)(Acceleration of S) = Net force acting on S

where acceleration and force are in a direction perpendicular to the
r—axis. The next step is to calculate the mass, acceleration, and net
force acting on S.

The mass of S is the string density p times the length of S, so
o+ Az

Massof S=p - V1 (ug(s, t))3ds.

T
The value of |uy| is close to 0 under the assumption of small vibra-
tions, so /1 + (u;)? is approximately 1 if (u,)? is assumed to be
significantly smaller than one. In this case the mass of S will be
approximated by
z+Ax
(7.2) Mass of S ~ p/ 1ds = pAz.
x

Next, the vertical acceleration of S is u(z,t) if one chooses the

left end of x to identify the position of the segment S.

Finally, it was assumed that tension is the only force present
which acts on the string, so the net force applied to S is the net tension
acting on S. The net tension here is the result of the pulling on the
ends of S by the portions of the string to its right and left (Figure 7.3).
On the left end of S, the tension force pulls left with magnitude T in
a direction parallel to the string. The vector —(1,u,(z,t)) is a left-
pointing vector tangent to the string at position x (see Figure 7.4);
dividing by its length constructs a unit tangent vector. Multiplying
the unit vector by T then forms the left-pointing tension force

7 (1, uz(x,t))
1+ (ug(z,t))?
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Figure 7.4. The left-pointing tangent vector —(1, uz).

acting on the left end of S. The vertical component of this force is
then

_r uz(z,t)
V14 (ug(z,t))? ’

Under the assumption of small vibrations, we again make the approx-
imation /1 + (u;)? = 1, and so the vertical component of the force
due to tension on the left side of S is approximately

~Tu,(z,t).

Repeating this construction at the right end x + Az of S, the ver-
tical component of the force due to tension on the right side of S is
approximately

Tu,(z + Az, t).
The net vertical force acting on S is then given by

(7.3) Net force on S = Tu,(z + Az, t) — Tu,(z,t).
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Substituting the approximations for the mass (7.2), acceleration
ugt(z,t), and force (7.3) into Newton's Second Law (7.1) gives

(7.4) (pAz)ug(z,t) = Tu,(z + Az, t) — Tu,(z,t).
Dividing by Az produces the form

ug(z + Az, t) — ug(z,t)
Az ’

pug(z,t) =T
which by letting Az — 0 results in
pug(z,t) = Tuge(x,t).

Setting ¢ = /T'/p gives the common form of the wave equation,

@

Exercise 7.1. A more general equation for the string is
puys = Tuzy — Fug — Ru + f(:t,t)

where F' and R are nonnegative constants. The additional terms on
the right side represent additional forces acting on the string:

—Fu; = force due to friction,
—Ru = linear restoring force,
f(z,t) = external force such as gravity.

Explain how the force —Ru affects the string when u(x,t) > 0 and
u(z,t) < 0. Explain why the force —Fu; is opposite in sign from the
vertical velocity u;.

Exercise 7.2. Suppose that the string is not homogeneous, that is,
the tension and density of the string vary along the string as functions
T = T(x) and p = p(z). Ignoring all other forces, follow the derivation
for the homogeneous string to show that

px)uy = (T(z)uz)s-
(The mass of segment S is now f:+Am p(8)v/1+ (ug(s,t))?ds. Ap-

proximate the density of segment S with p(s) = p(z) for z < s <
z + Azx.)
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Figure 7.5. Graphical interpretation of solutions of u:; = c2uzz.

7.3. Solutions of the wave equation

Some general remarks about solutions of the wave equation are given
in this section. The following chapters will look more closely at con-
structing particular solutions.

It follows from Example 4.3 of Section 4.1 that if f(z) is any non-
constant twice differentiable function, then u(z,t) = f(z — ct) and
u(z,t) = f(z + ct) are traveling wave solutions of the wave equa-
tion (7.5). This shows that the value of ¢ in uy = c®u,, is the speed
at which any traveling wave will propagate along the string. Since
¢ = /T /p, increasing the tension T in a string will increase the speed
at which traveling waves move along the string. Strings made of dense
materials (larger values of p) have slow moving traveling waves.

A graphical interpretation of u; = c?u,, is that the vertical ac-
celeration uy at a point on the string is proportional to the concavity
Uz, Of the string at that point. Portions of the string which are con-
cave up are accelerating upward, while portions of the string which
are concave down are accelerating downward (Figure 7.5).

While the wave equation u;; = cu,, is only one of many equa-
tions which admit wave-like solutions, it does describe a number of
physical phenomena. Some other examples besides a vibrating string
include longitudinal vibrations of a long slender bar, and current and
voltage in electrical transmission lines.
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Exercise 7.3. The following problem is an example of an Initial
Boundary Value Problem for the wave equation:

PDE: wuy =u, 0<z<l, 0<t <00,
BC: u(0,t) =sin(t), wu(l,t) =0,
IC: u(z,0) =0, wu(z,0)=0.

The conditions BC are called boundary conditions and the conditions
1C are called initial conditions. In terms of a vibrating string, give
a physical interpretation for each part of this initial boundary value
problem. Based on this interpretation, sketch several frames of ani-
mation which might represent the solution u(x,t) for a short period
of time starting at ¢t = 0.

Exercise 7.4. (Transmission Line Equations) Co-axial cables are of-
ten used in audio and video applications. At time ¢, let i(x,t) and
v(z,t) denote the current and voltage (respectively) at position z
along a co-axial cable.

The transmission line equations approximating the current and volt-
age in the cable are

i +Cvy +Gv = 0,
v+ Liy +Ri = 0
where C is the capacitance per unit length of the cable, G is the

leakage per unit length, R is the resistance per unit length, and L is
the inductance per unit length.

(a) Show that if C, G, R, and L are constants, then eliminating
v in the transmission line equations results in

(Differentiate the first equation with respect to x and the
second equation with respect to t, combine the results to
eliminate v;, and v,;, and then use the second equation v, +
Li; + Ri = 0 again to eliminate the remaining v, term.)
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(b) Show that in a similar manner, the transmission line equa-
tions can be combined to eliminate 3.

If R =0 and G = 0, the two second order equations derived above
give wave equations for the current and voltage

-2 2
it = Clgxy, Utt = C ' VUzx

with ¢ = /1/(CL).



Chapter 8

D’Alembert’s Solution
of the Wave Equation

In this chapter it will be shown that the general solution of the wave
equation ug = cug, is the sum of two traveling waves, one moving
right and the other moving left:

u(z,t) = F(z — ct) + G(z + ct).

This form will then be used to show that the solution of the initial
value problem

U = Cugy, —00< T <00, t>0,
u(z,0) = f(x),
ut(.’II,O) =g($)

can be written as

1 x+ct
u(z,t) = = (f(z —ct) + flx+ct)) + 52/ g(s)ds.

—ct

N =

8.1. General solution of the wave equation

Recall from Example 4.3 that the wave equation uy = c?uz, admits
traveling wave solutions of the form h(z—ct) and h(z+ct). There may
be, however, other solutions which are not in the form of a traveling

53



54 8. D’Alembert’s Solution

wave. In this section we will derive the general solution of the wave
equation and show that it is the sum of two traveling waves.

Since traveling waves h(x — ct) and h(x + ct) are already known
to be solutions of the wave equation, the change of variables

E=x—ct, n=x+ct

will be made to establish a coordinate system which “follows” trav-
eling waves to the left and right. In this new coordinate system the
solution of the wave equation is more easily constructed.

Let {(z,t) = x — ct, n(z,t) = z + ct and define U(&,n) by

u(z,t) = U(&(z, t),n(z, 1))
Then by the multivariate chain rule,

u = Ul +Upne = —cUe +cUp,
e = —c(Ueei + Uenme) + c(Une&e + Upnme)
—c(—=cUge + cUgp) + c(—=cUpe + cUpy)
*Use — 2¢*Uey + Uy,
Uz = Uels +Upne =Ue + Uy,
Uzz = (Ueels + Ugynz) + (Unela + Unyiz)
(Uee + Uen) + (Une + Upn)
= Ut 4+ 2Uen + Upy-
Substituting these expressions for uy and ug, into uy; = c?ug, and

simplifying results in a relatively simple partial differential equation
for U(&,m),

Uen = 0.

Writing this as (Ug), = 0 implies Ue is constant with respect to n,
and so U; is a function of &,

Ue = ¢(§).

Integrating with respect to £ gives

Ue,n) = / o(6)de + G(n) = F(€) + G(n)
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where G(n) is a constant of integration with respect to £ and F(£) is
an anti-derivative of ¢(£). Converting £ and n back to = and t shows
that the general solution of uy; = c?uz, is

(8.1) lu(z, t)=F(x—ct)+ G(x +ct) ‘

where F' and G can be any two twice-differentiable functions. The
general solution u(x,t) of the wave equation is the sum of two trav-
eling waves with speed ¢, one moving right and the other moving
left.

Example 8.1. The following are all solutions of uy = c?uz,:

u(z,t) = "™,

u(z,t) = sin(z + ct),
w(z,t) = (z — ct)? + e~ (#FeD)”,

The first two are traveling waves; however, the third is not. The first
solution is purely a right moving wave F(x — ct) = e*~¢ with no left
moving part. The second solution consists only of a left moving wave
G(x + ct) = sin(z + ct), while the third solution is a combination of
left and right moving waves.

Exercise 8.2. Use direct substitution to verify that the function
u(x,t) = cos(t)sin(x) is a solution of uy = ug,. According to the
general form (8.1) for solutions of the wave equation, it must then be
possible to write u(z,t) as u(z,t) = F(z — t) + G(z + t). What are
the left and right moving waves in this case?

8.2. The d’Alembert form of a solution

When given the acceleration of an object moving along a line, one
can recover the position of the object by integrating twice. This
results in two constants of integration which are determined by the
initial position and initial velocity of the object. Similarly with the
vibrating string, we will now assume that the initial position u(z,0)
and initial velocity u;(z,0) are given for all values of z along the
string. For example, a string which is initially at rest has initial
position u(z,0) = 0 and velocity u;(x,0) = 0. A string which is given
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an initial pluck by pulling on the string and simply letting go has an
initial profile shape u(z,0) = f(x) and velocity u.(x,0) = 0.

In this section we will construct the solution of the following
initial value problem for the displacement u(z,t) of an infinitely long
vibrating string:

PDE: wuy = cugs, —00<z <00, t>0,
1C: u(x,0) = f(z),
u(z,0) = g(x).
The wave equation (PDE) describes the acceleration of the string,

while the initial conditions (IC) give the initial position and velocity
of the string in terms of given functions f(z) and g(z).

To solve this problem, one can start with the general form for
solutions of the wave equation

u(z,t) = F(z — ct) + G(x + ct).
Substituting into the initial position condition u(z,0) = f(z) gives
(8.2) F(z) + G(z) = f(x),

while substituting into the initial velocity condition u;(x,0) = g(z)
results in

—cF'(z) + G'(z) = g(z).

Dividing this last equation by c and integrating from 0 to x provides
us with a second equation for F(z) and G(z),

1 x
(8.3) —F(z)+ G(z) = —=F(0) + G(0) + E/ g(s)ds.
0
The conditions (8.2) and (8.3) form a system of two linear equations
for F(z) and G(z); solving this system for F(z) and G(z) gives

1

Fla) = 3f(@) = 5(-FO)+60) - 5 [ gls)as

Glz) = %f(:c)+%(—F(O)+G(O))+2iC /O " g(s)ds.
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Once F(z) and G(z) have been found, the solution u(z, t) of the initial
value problem is then constructed by computing F(x—ct)+G(x+ct),

u(z,t) = F(z—ct)+ Gz +ct)

= sfe—e) = 5-FO+GO) -5 [ ats)as

x+ct
+ %f(“ct)+%(-F(0)+G(0))+§5/0 o(s)ds

x+ct
= % (f(x—ct)+ flx+ct)) + -élz/z—ct g(s)ds.

The resulting form of the wave equation solution given by

z4-ct

(F(z - ct) + f(z +ct)) + 512 / o(s)ds

—ct

| =

(8.4) u(z,t) =

is called the d’Alembert solution to the wave equation and explic-
itly gives u in terms of the initial information f(z) and g(z). The
wave equation is unique: rarely can one find such an explicit form for
solutions of a partial differential equation.

Example 8.3. The solution of the initial value problem

Uy = CPUgy, —00< T <00,t>0,
w(z,0) = e,
u(z,0) = 0

can be found using (8.4) with f(z) = e=*" and g(x) =0,
)

The initial shape u(z,0) = e~ splits into two traveling waves, each
half as high as the original shape and traveling in opposite directions.
Four frames of animation with ¢ = 1 are shown in Figure 8.1.

Exercise 8.4. Consider the initial value problem

Uy = C*Ugpy, —-00<T<00,t>0,
u(z,0) = sin(x),
u(z,0) = 0.

(a) Find the d’Alembert solution of this initial value problem.

(b) Animate the solution from part (a) with ¢ = 1.
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Figure 8.1. Profiles of the solution of the wave equation with
initial profile u(z,0) = e

(¢) Recall that a solution of the wave equation is really the sum
of two traveling waves. To study the solution from part (a)
in more detail, split your solution from part (a) into a right-
traveling wave F(x — ct) and a left-traveling wave G(x + ct).
Then animate F'(z—ct) and G(z+ct) separately. The solution
u(x,t) is the sum of these two traveling waves.

(d) For another view of the solution, use trigonometric identities
to write the solution in (a) as u(x,t) = cos(ct)sin(z). This
shows that the animation of u(z, t) looks like the profile shape
sin(x) with amplitude cos(ct) oscillating between —1 and 1.

Exercise 8.5. Find the d’Alembert solution of the following initial
value problem and animate the result:

Uy = Ugg, —o<r<oo,t>0,
u(z,0) = 0,
u(z,0) = ze ™.

Exercise 8.6. Find the solution of the following initial value prob-
lem:

Uy = Ugg, —o0o << oo, t> 0,
u(z,0) = sin(x),
w(z,0) = ze

How does this problem and its solution relate to the previous two
exercises?



Chapter 9

Vibrations of a
Semi—infinite String

In the previous chapter, solutions of the wave equation were con-
structed to describe the motion of an infinite string extending over
the entire z axis. A string that has one end and extends indefinitely
in only one direction is called semi-infinite. In this chapter we will
construct solutions of the wave equation to describe the motion of
semi-infinite strings in two settings—when the end of the string is
fastened down, and when the end of the string is free to move. Of
particular interest will be the behavior of a disturbance, propagating
along a semi-infinite string, when it encounters the end of the string.

9.1. A semi-infinite string with fixed end

Suppose that a string is semi-infinite, extending over the region 0 <
x < 00, with the end of the string at = 0 pinned down (Figure 9.1).
In this case the displacement u(z,t) at « = 0 is 0 for all ¢, forming

Figure 9.1. Semi-infinite string with left end fixed.
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an equation u(0,t) = 0 called a boundary condition. If the initial
position and velocity of the string are given, then the wave equa-
tion together with the boundary and initial conditions form an initial
boundary value problem for the motion of this semi-infinite string;:

Ugp = C*Ugy, 0< <00, t>0, (PDE)

©.1) u(z,0) = f(z), (Ic)
' w(z,0) = g(x),
u(0,t) = 0. (BC)

The method used in Section 8.2 to derive the d’Alembert solution of
the wave equation will now be used to construct a solution of this
problem.

Recall from Section 8.2 that the general solution of the wave
equation uy = c?ugy is

u(z,t) = F(z — ct) + G(z + ct),

where the functions F' and G are constructed from the initial condi-
tions u(z,0) = f(z) and us(z,0) = g(x) in (9.1) by

F@) = 30@- o [ ato)s

G(x) =§ﬂ@+§l%@m

Note that here f(z) and g(z) are defined only for > 0 since the string
is semi-infinite. The resulting form of the wave equation solution
x+ct

(flx—ct)+ flx+ct)) + %/ g(s)ds

—ct

9.2)  u(z,t) =

D=

is valid as long as « — ct and x + ct are nonnegative. Assuming that
¢ is positive, the value of = + ct is nonnegative when x > 0 and ¢t > 0.
The value of x — ct, however, is negative when x < ct. In this case
the solution u(x,t) is not represented by (9.2).

For the case x — ¢t < 0, the function u(z,t) must still be the
sum of a left-traveling wave and a right-traveling wave since u(z,t)
is a solution of the wave equation. The traveling wave represented
by G(x + ct) is still valid since x + ¢t > 0, but here we will replace
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F(x — ct) in (9.2) with a different traveling wave Fy(z — ct) so that
u(z,t) = Fi(x — ct) + G(z + ct).

The case x —ct < 0 refers to the left-most part of the string 0 < z < ct,
and in particular includes the end of the string at £ = 0. Since the
string is pinned down at z = 0, the boundary condition «(0,¢) = 0
requires

u(0,t) = F1(—ct) + G(ct) = 0.
Letting z = —ct shows that the function F is defined by F;(z) =
—G(—z) for all z < 0, and so the form of u(z,t) is
u(z,t) = Fi(z — ct) + G(z + ct) = =G(ct — z) + G(x + ct).

Computing this expression with the function G(z) from before, the
value of u(z,t) when z — ct < 0 is

x+ct
(9.3) u(z, t) = % (fz+ct)— flct—x))+ i/ g(s)ds.

2c t—x

Putting the two cases (9.2) and (9.3) together, the solution u(z, t)
of (9.1) is now piecewise defined. When z > ct, then the value of
u(z,t) is given by (9.2),

r+ct
(flz+ct)+ f(x—ct)) + 1 / g(s)ds,

(9.4a) u(z,t) = 5% ).,

[ SRR

while if > ct, the value of u(z,t) is given by (9.3),

1 x+ct
04b)  ule,t)= 1 (flz+ct) = flet—2)) + 5 / g(s)ds.

t—x

N

Example 9.1. The initial boundary value problem

U = AUz, 0<ax<o00,1>0,

u(z,0) = e—(x—s)Q,
ut(z,0) =0,
u(0,t) =0

represents a semi-infinite string with its left end fixed. Traveling
waves move along the string with speed ¢ = v4 = 2. Initially, the
string is stretched along its equilibrium position, and then, at time
t = 0, picked up around z = 5 and let go with no initial velocity.
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Figure 9.2. A left-traveling pulse encounters the fixed end of
the string at £ = 0 and reflects with opposing amplitude.

Substituting ¢ = 2, f(z) = e~ @=5" and g(z) = 0 into (9.4) gives the
solution

( t) 3 %6_(I+2t_5)2 + Ee—(anv—2t—5)2 if = > 2t,
B P TR N P

During the first couple seconds of animation, the solution resembles
that of an infinite string. As shown in Figure 9.2, the initial shape
u(z,0) = e=(@=5)° splits into two smaller pulses, one traveling to the
left and the other traveling to the right. In the following seconds, the
right-traveling pulse continues to move to the right. The left-traveling
pulse, however, encounters the fixed end of the string at x = 0. As the
pulse reaches the fixed end, it reflects and becomes a pulse traveling
to the right but with opposing amplitude.

Exercise 9.2. Consider the initial boundary value problem for a
semi-infinite string

Uy = Uzz, 0< <00, >0,
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f

Figure 9.3. The odd extension of f(z), z > 0.

The initial conditions of this problem represent a string which is ini-
tially at rest in its equilibrium position, then given a “kick” at time
t = 0 which imposes an upward velocity of u;(z,0) = ze~*". Find
the d’Alembert solution (9.4) of this semi-infinite problem. Note that
here the piecewise function (9.4) simplifies to a single formula for all
z > 0 and t > 0. Animate the solution.

Another approach for solving the initial boundary value problem
(9.1) is to first extend the semi-infinite problem to a problem for the
entire infinite line, and then use d’Alembert’s formula. For example,
consider the case of a semi-infinite string with zero initial velocity:

uttzczum, O0<zr<oo, t>0,

’U,(.’L‘,O) = f(.’l?),
(95) Ut(x’o) =0,
u(0,t) = 0.

Let fo(x) be the odd extension of f(z), defined by
T if z >0,
folwy= {1
—f(-z) ifz <0,

and shown in Figure 9.3. A solution of the initial boundary value
problem (9.5) can be constructed using the odd extension of the initial
position and d’Alembert’s formula (8.4) for the infinite string by

u(z,t) = % (folz — ct) + folz + ct)).

This is verified in the following exercise.
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Exercise 9.3. Since u(z,t) = L(fo(z — ct) + fo(z + ct)) is the sum
of traveling waves with speed c, u(zx,t) satisfies the wave equation
Uy = c?u,,. Verify that u(x,t) also satisfies the initial and boundary
conditions in the initial boundary value problem (9.5).

Exercise 9.4. The companion MATLAB software (see page xiii) in-
cludes the script wvstring for animating the solution u(z,t) of (9.1).
In MATLAB, run this script and set f(z) = e~(@=3) and g(z) = 0.
Animate the result with the z—range set to [0, 10], then animate the
result again with the z—range set to [—10, 10] in order to see the effect
of the odd extension of the initial data. The true part of the string
isx > 0.

9.2. A semi-infinite string with free end

Suppose the left end of a semi-infinite string is attached to a ring
which is allowed to move vertically along a frictionless vertical rod.
The ring does not fix the left end, but instead it is assumed that the
ring holds the end of the string “straight” out at x = 0:

<>\

\/ x
This condition, written u,(0,t) = 0, is a type of boundary condition
commonly used to describe a free end of a string.

u

Following the steps used for the string with fixed end, the solution
of the initial boundary value problem
Uy = CPUgy, 0<z <00, t>0, (PDE)
u(z,0) = f(x), (1C)
ut(z,0) = g(z),
u,(0,8) =0 (BC)

(9.6)
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is also piecewise defined. As shown below in Exercise 9.5, if z > ct,
then

T+ct
(9.7a) u(z,t) = % (flx+ct)+ flx —ct)) + %/ g(s)ds,

—ct

while if z < ct, then

(9.7b) u(z,t) = = (flx +ct) + f(ct — x))

+ élz [/Ozﬂtg(s)ds + /Oct—z g(s)ds] .

Exercise 9.5. For the semi-infinite string with free end, let u(z,t) =
Fi(x — ct) + G(x + ct). Show that in order to satisfy the boundary
condition u,(0,t) = 0, F; must satisfy Fj(z) = —G'(-z), and so
Fi(z) = G(—z2) for all z = 2 — ¢t < 0. Then follow the steps in
Section 9.1 to derive (9.7).

N

Example 9.6. Consider Example 9.1, but with the left end free in-
stead of fixed:

Ut = dUgze, 0<x <00, t>0,
u(z,0) = 6_(35_5)27
Ut(.T,O) =0,
u,(0,t) = 0.

Substituting ¢ = 2, f(z) = e~(==5 and g(z) = 0 into (9.7) gives the
solution

et) - lem(@t2t=5)° L Lo=(==20-5)"  if 5 > 9,
wt) = le=(@+2t=5)" | Lo—(2t=a=5)" jf & < 9y

Figure 9.4 shows several frames of animation of u(z,t). Similar to
the string with fixed end, the initial shape u(z,0) = e~ (@=9)’ splits
into two smaller pulses during the first couple seconds of animation,
one traveling to the left and the other traveling to the right. In the
following seconds, however, the left-traveling pulse reaches the free
end z = 0 and reflects back to the right with the same amplitude and
orientation.
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Figure 9.4. A left-traveling pulse encounters the free end and
reflects with the same amplitude and orientation.

Exercise 9.7. The script wvstring provided with the companion
MATLAB software (see page xiii) animates the d’Alembert solution

of either (9.1) or (9.6). In MATLAB, run this script and animate

the solution of Examples 9.1 and 9.6, comparing the behavior of the
solution at the end of the string.



Chapter 10

Characteristic Lines of
the Wave Equation

In the first chapter, a wave was described in terms of a disturbance,
initially located in a small region of a medium, which then spreads
as neighboring regions of the medium interact. The spreading of a
disturbance through a medium will be examined in this chapter for
waves governed by the wave equation. In particular, we will inves-
tigate how an initial disturbance described by the initial conditions
u(z,0) and us(z, Q) determines the solution to the wave equation in
other parts of the medium at later times.

10.1. Domain of dependence and range of
influence

In Section 8.2, it was shown that the solution of the initial value
problem

Upp = czum, —o<zxr<oo, t>0,
u(z,0) = f(x),



68 10. Characteristic Lines of the Wave Equation

(xg.20)

Slope l/c Slope —-1/c

Xo—cty Xo+ cly x
Figure 10.1. Domain of dependence [zo — cto, zo + cto] of u(zo, to).

can be expressed using the d’Alembert formula as

x+ct
u(et) =5 (e —ct) + flat o)+ o [ glos

2c —ct
Since f(z) = u(x,0) and g(x) = u(x,0), this can be rewritten as

(10.1)

1 1 x+ct

u(z,t) = = (u(z — ct,0) + u(z + ct,0)) + — / u(s,0)ds.

2 2c r—ct
This form emphasizes the fact that the value of u at a point (zo, to)
depends on the initial values of u and wu;, but only in the part of
the medium between positions z¢g — ctg and g + ctg. The interval
[zo—cto, To+cto] in the medium is called the domain of dependence
for the solution u at (zo, to).

Looking down on an zt—diagram, the domain of dependence
refers to an interval [xo — cto, xo + cto] on the z—axis, since it rep-
resents the points at time 0 which are used in the construction of
the solution w at the point of later time (zg,%p). As shown in Fig-
ure 10.1, the domain of dependence for (g, %) can found by drawing
lines of slope 1/c and —1/c from (zo,?o) back to the z—axis. These
lines are called characteristic lines or characteristics of the wave
equation.

Alternatively, suppose that a disturbance is initially contained
within an interval I in the medium. The range of influence of I
is the collection of all points (z,t) in the xt—diagram whose domain
of dependence includes some (or all) points of I (Figure 10.2). The
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1 x

Figure 10.2. Range of influence of the interval I.

solution u at each point (z,t) in this set is “influenced” by some (or
all) of the initial values of u and u; along I on the z—axis. If (z,¢)
lies outside this set, then the value of u at position z and time ¢ is
not affected by the initial disturbance in I.

10.2. Characteristics and solutions of the wave
equation

In the special case that u;(x,0) = 0 for all z, the d’Alembert solution
(10.1) reduces to

u(z,t) = 1 (u(z — ct,0) + u(z + ct, 0)).

This shows that the value of u at (x,t) depends only on the initial
value of u at two points ;1 = x — ¢t and x2 = = + ct in the medium.
Once the initial values u(z1,0) and u(z2,0) are known, the solution u
at (z,t) is constructed by taking the average of u(x1,0) and u(z2,0).
In terms of an zt—diagram (see Figure 10.3), the value of u(z,t) can
be constructed by following the characteristic lines with slopes +1/c
from (z,t) back to the z—axis and averaging the value of u(z,0) at
the two resulting points ;1 = z — ¢t and x3 = = + ct on the x—axis.
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t
u= %(“1 + Up)
Slope 1/c Slope -1/c
u, = u(x,,0) Uy = u(x,,0) X

Figure 10.3. Value of u at (z,t) is the average of two initial values.

Figure 10.4. Six regions divided by four particular charac-
teristic lines from Example 10.1.

Example 10.1. Characteristics and an xt—diagram will be used here
to construct a solution of

Uy = 4Uyy, —00< T <00, t>0,

(2,0) 1 ifo<z<1,
u(x,0) =
0 otherwise,

ut(z, O) = 0.

The initial disturbance in this problem is contained within the interval
I = [0,1] of the medium, and the characteristic lines will have slopes
+1/2 since ¢ = 2. Drawing left and right characteristic lines from the
endpoints of I divides the zt—diagram into six regions (Figure 10.4);
the range of influence of I consists of Regions 2, 4, 5, and 6.
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Figure 10.5. Extending characteristics back from (z,t) to
the z—axis.

u=0.5 u=0 u=0.5

Figure 10.6. An rt—diagram of the solution v in Example 10.1.

As shown in Figure 10.5, each point (z,t) in Region 2 has the
property that the two characteristic lines extending back from (z, t)
to the x—axis will both end within the interval I. Since the value of
u is 1 at each point in I, the value of u at (z,t) in Region 2 is the
average u = %(1 + 1) = 1. At a point in Region 4, the characteristic
line with positive slope extends back to the z—axis outside of I where
the value of u is given to be 0 (Figure 10.5). At each point in Region
4, the value of u is then the average u = 2(0+1) = 1. Repeating this
process for the remaining four regions constructs a function u which
is constant within each of the six regions as shown in Figure 10.6.

The xt—diagram of the function u(x, t) can be converted to frames
of an animation by taking cross-sections in the xt—plane. Using the
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Figure 10.7. A slice of the xt—diagram at t = 1/2 produces
the profile u(z, 1/2).
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Figure 10.8. Four frames of animation of u(z, t) from Example 10.1.

zrt—diagram shown in Figure 10.6, the frame of animation showing the
profile u(z, 1/2) is constructed in Figure 10.7 by taking the horizontal
slice of the xt—diagram at ¢ = 1/2. Taking slices of Figure 10.6 at
times t = 0, 1/8, 1/4, and 3/8 results in the four frames of animation
shown in Figure 10.8. The initial step shape u(z,0) splits into two
smaller step-shaped pulses traveling to the right and to the left.

The function u(x,t) constructed in the last example is not contin-
uous and is not a solution of the wave equation uy; = c?ug, along the
characteristic lines dividing the six regions. The use of d’Alembert’s
formula, however, has constructed a function which is a solution of the
wave equation in the interior of each region and which has properties
similar to other solutions of the wave equation.
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Exercise 10.2. Use characteristics to construct an xt—diagram rep-
resentation (similar to Figure 10.6) for the d’Alembert solution of

Ut = Ugg, —00< T <00, t>0,

ifo<zx<1
u(x,O):{O ifo<ax<1,

1 otherwise,

ut(z,0) = 0.

Exercise 10.3. Use characteristics to construct an xt—diagram rep-
resentation for the d’Alembert solution of

Uy = Ugy, —00<T<O00,t>0,
1 ifo<z<1,
u(z,0)=¢ -1 ifl<z<2,
0 otherwise,

ue(z,0) = 0.

Exercise 10.4. The solution of Example 10.1 can be written explic-
itly by writing the initial profile u(z,0) in terms of the Heaviside
function H(z).

(a)

(b)

Verify that H(z)H (1 — z) is a way of representing the given
initial condition u(z,0) in Example 10.1.

Using u(z,0) = H(z)H(1 — x), write down the d’Alembert
form of the solution of the initial value problem in Exam-
ple 10.1 and animate the result. (The Heaviside function in
Maple V is Heaviside(x). If animating using MATLAB, the
companion MATLAB software (page xiii) includes the func-
tion heavi(x) to compute H(zx)).

Plot the solution u(z,t) from (b) as a surface. After changing
the viewpoint so that you are looking directly down on the
surface, the result should resemble the xt—diagram of the
solution shown in Figure 10.6.

10.3. Solutions of the semi-infinite problem

Characteristics and an xt—diagram can also be used to construct
solutions of the wave equation for a semi-infinite medium. Here we
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Region 2

oot Ve

Region 1

Figure 10.9

will examine the semi-infinite problem with zero initial velocity and
left end pinned at zero:

utt:c%m, O<zx<oo, t>0,

u(z,0) = f(x),
ug(z,0) =0,
u(0,t) = 0.

It was shown in Section 9.1 that the solution of this initial bound-
ary value problem is piecewise defined and given by equations (9.4).
When u;(z,0) is zero, u(z,t) has the form

u(z, t) = {

The line x = ct which distinguishes between the two cases of this
function also happens to be a characteristic of the wave equation.
As shown in Figure 10.9, this line divides the first quadrant of the
xt—plane into two regions.

(u(z + ct,0) +u(z — ct,0)) ifz>ct,
(u(z +ct,0) —u(ct — z,0)) ifz<ct.

SIS

In Region 1 of Figure 10.9 (z > ct), the solution is given by
u(z,t) = 5 (u(z + ct,0) + u(z — ct,0)),

and is the average of the initial value of u at positions x + ¢t and
z — ct in the medium. As shown in Figure 10.10, this value can be
constructed in the xrt—diagram by drawing lines of slope +1/c from
(z,t) back to the z—axis to identify the location of the points = =+ ct.
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(x.,t)

=

x=ct x+ct

Figure 10.10. Value of u at (z,t) in Region 1 depends on
the value of u at (x % ct, 0).

t N\

x—ct ct—x x+ct

Figure 10.11. Value of u at (z,¢) in Region 2 depends on
the value of u at (z + ct,0) and (ct — z,0).

In Region 2 of Figure 10.9 (z < ct), the solution is given by
u(z,t) = § (u(z + ct,0) — u(ct — z,0)).

As shown in Figure 10.11, extending a line with slope —1/c from
(z,t) back down to the z—axis identifies the position = + ct. When
extending the characteristic line with slope 1/c from (z,t), however,
the characteristic encounters the t—axis. By reflecting off the t—axis
back to the positive z—axis with slope —1/c, the resulting line meets
the x—axis at the position ct —x. After locating positions 1 = ct —
and z3 = x + ct in the medium, the value of u at (z,t) is then found
by computing u(z,t) = 1 (u(z2,0) — u(z1,0)).
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Exercise 10.5. Use characteristics to construct an xt—diagram rep-
resentation for the d’Alembert solution of

Uy = Uz, 0 < T <00,t>0,

1 ifo0 1,
u(:c,O) _ 1 <z <
0 otherwise,
ut(x,0) =0,
u(0,t) = 0.

Exercise 10.6. When the end of the string is free with boundary
condition u;(0,t) = 0, the d’Alembert form for u(z,t) is given by
equations (9.7) in Section 9.2. Taking us(z,t) = 0 in (9.7), how
are characteristics used in the zt—diagram to construct the value of
u(x,t)? Use characteristics to solve the previous problem with the
fixed boundary condition u(0,¢) = 0 replaced by the free boundary
condition u;(0,t) = 0.



Chapter 11

Standing Wave
Solutions of the Wave
Equation

The d’Alembert form for solutions of the wave equation was based
on the observation that the general solution of u; = c®ug; could
be decomposed into the sum of two traveling waves, each traveling
with speed ¢ but in opposite directions. Another approach for solving
the wave equation involves decomposing the solution u(z,t) into the
sum of standing waves. In this chapter we will begin the discussion
of this approach by computing standing wave solutions for the wave
equation.

11.1. Standing waves

As shown previously in Section 8.1, the general solution of u;; = c?ugs
is u(z,t) = F(z — ct) + G(x + ct), the sum of two traveling waves.
The function

u(z,t) = sin(z — t) +sin(z + t)
is an example of such a solution, although the horizontal movement of
a disturbance does not readily appear in its animation (Figure 11.1).

The motion seen in Figure 11.1 is better explained by using a trigono-
metric identity to rewrite u(x,t) as the product

u(z,t) = 2cos(t) sin(x).
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Figure 11.1. Profiles of u(z,t) = sin(z — t) + sin(z + t).
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Figure 11.2. A simple motion of a string fixed at both ends.

In this form, the basic profile shape v(z) = sin(x) is being scaled by
an amount w(t) = 2cos(t) at time ¢.

In general, a non-constant function of the form u(z, t) = w(t)v(x)
is called a standing wave. The animation of such a function shows
the graph of the profile shape v(z), which is then scaled vertically by
an amount w(t) at time ¢. When w(t) is periodic in time, the result
can resemble the motion of a vibrating string such as the one shown
in Figure 11.2.

11.2. Standing wave solutions of the wave
equation

Not every standing wave is a solution of the wave equation. In this
section we will find those particular standing waves u(z, t) = w(t)v(x)
which are solutions of the wave equation in an infinite medium,

Ut ZCQum, —oo <z <oo, t>0.

When u(z,t) = w(t)v(z), the wave equation takes the form

w”’ (t)v(x) = w(t)v” (z).



11.2. Standing wave solutions of the wave equation 79

Dividing both sides by w(t)v(z) gives the equation

w’(t) _ ,v"(z)
=c
w(t) v(z)
where the left side depends only on ¢ and the right side depends only
on z. Since the left side is independent of z, the right side must also

be independent of z, and so the right side must be constant. We can
then write

w’(t) _ ,v"(x)

w(t) v(z)
for some constant A, resulting in the two ordinary differential equa-
tions

(11.1) w”(t) = Aw(t), v'(z) = C%v(z)

The solutions of these equations depend upon whether A is zero, pos-
itive, or negative.

If A =0, then the two differential equations in (11.1) reduce to
w'’(t) =0, v'(z)=0.

In this case w(t) = A+ Bt and v(z) = C' + Dz for arbitrary constants
A, B, C, and D, resulting in the standing waves

(11.2) u(z,t) = (A + Bt)(C + Dx).

If A > 0, then A can be rewritten as A = r? for some » > 0. In
this case the differential equations in (11.1) are of the form

" _ .2 " _ f 2
w'(t) = r2w(t), o'(z) = (C) v(z).
The general solutions here are w(t) = Ae”™® + Be " and v(z) =

Ce™/¢ 4+ De~"%/¢ giving the standing waves

(113) U(.T,t) = (Ae'"t + Be—rt)(cerz/c + De_”/c),

If A <0, then A can be rewritten as A\ = —r2 for some 7 > 0. In
this case the differential equations in (11.1) are of the form

w'(t) = —r?w(t), v'(z)=— (?)2 v(z).
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The general solutions here are w(t) = A cos(rt)+ Bsin(rt) and v(z) =
C cos(rz/c) + Dsin(rz/c), resulting in the standing waves

(11.4) wu(z,t) = (Acos(rt) + Bsin(rt))(C cos(rz/c) + Dsin(rz/c)).

Functions u(z,t) of the form (11.2), (11.3), and (11.4) describe
all possible standing waves which are solutions of the wave equation.
In subsequent sections we will select out those which meet certain
physical conditions.

Exercise 11.1. For the wave equation u;; = 9u,,, construct an ex-
ample of a standing wave solution for each of the cases A =0, A > 0,
and A\ < 0 by selecting values for A, B, C, D, and r. Animate the
results.

11.3. Standing waves of a finite string

The previous section gathered together all possible standing wave
solutions of the wave equation. In particular applications, however,
only a small subset of these may be physically realistic.

As a particular application, we will find the standing waves for a
string of finite length L in which both ends of the string are fixed,

U = CPugy, 0<z<L,t>0,
(11.5) w(0,¢) =0,
u(L,t) =0.

If a standing wave u(z,t) = w(t)v(z) is to satisfy the left boundary
condition u(0,t) = v(0)w(t) = 0 for all ¢, then either v(0) = 0 or
w(t) = 0 for all t. The possibility w(t) = 0 results in the zero function
u(z,t) = w(t)v(z) = 0, which is not considered a standing wave,
so v(0) = 0 is required of the function v(z). Similarly, the right
boundary condition u(L, t) = v(L)w(t) = 0 will require v(x) to satisfy
v(L) = 0. Thus, in order for u(z,t) = w(t)v(z) to be a standing wave
solution of (11.5), v(x) must be a function such that

(11.6) v(0) =0, w(L)=0.
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In the previous section it was found that standing wave solutions of
the wave equation u;; = c®uz, have the three basic profile shapes

v(z) =C+ Dz,
v(x) = Ce™/* 4+ De"%/°,
v(z) = Ccos(rz/c) + Dsin(rz/c).
The task now is to determine which of these profile shapes can match
the boundary conditions (11.6).
In order for the linear form v(z) = C'+ Dz to satisfy the boundary
conditions v(0) = 0 and v(L) =0 in (11.6), C' and D must satisfy
C =0,
C+DL=0.
In this case C and D must both be 0, so v(z) = 0 for all x. This,
however, would result in u(z,t) = w(t)v(x) = 0, which is not consid-

ered a standing wave. There are no standing wave solutions for the
fixed string with a linear profile shape.

In order for the exponential form v(z) = Ce®/¢ + De™"%/¢ to
satisfy (11.6), C and D must satisfy the two equations
C+ D=0,
CerL/c + De—rL/c =0.
Multiplying the first equation by —e "%/¢ and adding the result to
the second equation shows that C(e""/¢ — e~"L/¢) = 0. Since rL/c #
—rL/c, then e"%/¢ # e="L/¢_and so the only choice for C is 0. From
C + D = 0 the value of D must also be zero, and so v(z) = 0 for all
z. This profile shape, however, results in u(z,t) = w(t)v(z) = 0 and
is not considered a standing wave.
The third possible profile shape is the trigonometric form v(z) =
C cos(rz/c)+Dsin(rz/c). In order for this shape to satisfy the bound-
ary conditions (11.6), C' and D must be satisfy the two equations

C =0,
Dsin(rL/c) = 0.

The second equation implies either D = 0 or sin(rL/c) = 0; however,
since D = 0 would result in v(z) = 0 (no standing wave), the only
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remaining option is sin(rL/c) = 0. In this case rL/c must be a
multiple of , that is, rL/c = nm for some integer n. The constants
L and c are physical constants which describe the string, and so the
constant r must then be picked to be
_nmc
r=7

For every (nonzero) integer n we get a standing wave solution of the
form (11.4) with r = nwc/L:

u(z,t) = [Acos(nrmct/L) + Bsin(nwet/L)|Dsin(nra/L).

By renaming the arbitrary constants AD and BD as A and B, these
standing waves will be written as

(11.7) ‘ un(z,t) = [Acos(nmet/L) + Bsin(nnct/L)]sin(nmz/L). ‘

These are the only standing waves for a vibrating string with fixed
ends.

Exercise 11.2. If a string with length L has its left end fixed but
the right end is free, then the boundary condition at x = L changes
to ug(L,t) = 0. Find the standing wave solutions of

U = CPUgy, O0<z <L, t>0,
u(0,t) =0,
ug(L,t) =0.
Exercise 11.3. At this point we have omitted initial conditions for

the string. By picking appropriate choices of the constants n, A, and
B in (11.7), find the particular standing wave solutions of

Uy = Uz, O0< T <1, t>0,
u(0,t) =0,
u(l,t) =0
which satisfy the following initial conditions:
(a) u(z,0) = 10sin(rz) and us(z,0) = 0.
(b) u(z,0) =0 and w(x,0) = —3sin(27x).
(¢) u(z,0) = sin(4rz) and us(z,0) = 2sin(4rz).

Animate each solution.
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Figure 11.3. First or Fundamental Mode (n = 1)

11.4. Modes of vibration

The standing wave solution (11.7)
un(x,t) = [Acos(nmct/L) + Bsin(nnct/L)|sin(nmz/L)

of the wave equation for a string with fixed ends is a relatively simple
type of motion of the string called the n‘* mode of vibration. By
using a trigonometric identity, the time varying part

Acos(nmct/L) + Bsin(nnct/L)
can be rewritten as
Rcos(nmet/L — §)

where R and 6 are constants in terms of A and B. The standing wave
then becomes

(11.8) Un (z,t) = Rcos(nmct/L — §) sin(nmz/L)

with a profile shape sin(nmz/L) whose amplitude is scaled periodically
between —R and R. The first three modes of vibration are shown in
Figures 11.3-11.5.

The form of the standing wave (11.8) also shows that higher
modes of vibration “beat” at higher frequencies, which we then hear
as higher tones. From w(t) = Rcos(nwct/L — §) it follows that the
n** mode of vibration completes nrc/L oscillations between —R and
R in 27 seconds. The number
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“

Figure 11.4. Second Mode (n = 2)

Figure 11.5. Third Mode (n = 3)

is called the circular frequency of the n* mode. In practice it
is customary to refer to the number of complete oscillations in one

second, computed by
fn = 5 = oI cycles per second (Hertz).

The number f, is called the frequency of the mode, while the num-
bers { f1, fa, f3, - .. } are called the natural frequencies of the string.
The first natural frequency f; is often called the fundamental tone,
while the higher frequencies are called overtones.

nrc/L  nc

Exercise 11.4. Find the standing wave solutions for a finite string
which is free at both ends:

U = CPugg, 0<ax<L,t>0,
Ua:(0>t) =0,
ug(L,t) =0.

What does the animation of these modes of vibration look like?
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Exercise 11.5. Recall from the derivation of the wave equation u; =
c*uz, in Section 7.2 that ¢ = \/T/p where T is the tension of the
string and p is the constant density. This implies that the natural
frequencies of the string with fixed ends are given by

n |T

f n — ﬁ ;
(a) Explain what happens to the sound (frequencies) of the string
as the tension is increased. What happens when the density

of the string is increased?

(b) Steel guitar strings have densities which typically range from
0.40 to 2.0 grams per meter. If a guitar string 0.6 meters long
with density 0.40 grams per meter is tightened to a tension of
15 Newton-meters, what are the predicted natural frequencies
(in Hertz) of the string?

When looking for standing wave solutions u(z,t) = w(t)v(z) for
the string with two fixed ends, the critical part was finding profile
shapes v(z) which satisfied the differential equation for v(z) in (11.1)
and the boundary conditions (11.6). The related boundary value
problem

—cv" =X, forO<z<lL,
v(0) =0,
v(L) =0
is called a Sturm-Liouville problem. An extra minus sign has been
added in the differential equation—the X here is opposite in sign from
the value of X\ used in Section 11.2.
The values A\, = (nmc/L)? which yield a nonzero solution v(z) of
the Sturm-Liouville problem are called eigenvalues. Note that the cir-
cular frequency of vibration of the n* mode of vibration is in fact the

square root of an eigenvalue, w, = nmc/L = \/A,. The corresponding
solutions v, (x) = Dsin(nna/L) are called eigenfunctions.
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Chapter 12

Standing Waves of a
Nonhomogeneous String

12.1. The wave equation for a nonhomogeneous
string

The wave equation uy = c?uz, was derived as a description of a string
with constant density p and tension T where ¢ = T/p. When the
density or tension varies from position to position along a string, the
string is called nonhomogeneous. Returning to the derivation of
the wave equation in Section 7.2, recall the approximation (7.4) to
Newton’s second law of motion for a portion of the string lying above
the interval [z, x + Az] on the z—axis. If T and p depend on z, then
this approximation becomes

p(x)u(z,t) = T(x + Ax)uz(z + Az, t) — T(z)uz(z, t).

Dividing by Az and letting Az — 0 gives a more general form of the
wave equation,

(12.1) | p(@)uii(,t) = (T(@)ue(, 1)),

In the rest of this chapter we will find the standing wave solutions of
this equation and examine the modes of vibration for a nonhomoge-
neous string.

87
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12.2. Standing waves of a finite string

The process of looking for standing wave solutions of the more gen-
eral wave equation (12.1) is similar to the one used for the constant
coefficient wave equation us; = c®uyy. As in Section 11.3, consider
a string of finite length L in which both ends are held fixed. If the
string is nonhomogeneous, then the boundary value problem for the
displacement u(z,t) of the string is

p()un(z,t) = (T(z)uc(a,t)e, 0<z <L, t>0,
u(0,t) =0,
u(L,t) = 0.

To find the standing wave solutions u(z,t) = w(t)v(z) of this problem,
substitute u(x,t) = w(t)v(z) into the wave equation to get

p(z)v(z)w”(t) = (T(z)v(x)) w(?),
and then divide both sides by v(z)w(t) to separate the variables into

w(t) — pz)u(@)

Since the left side does not depend on x, the right side is also inde-
pendent of z and so is constant. Letting this constant be —\ and

w'(t) _ (T(w'(@)

writing

w'(t) _ (Tep'@) _ |
w(t) ~ p(@la)

produces the two ordinary differential equations

(12.2) —w"(t) = Mw(t), —(T(z)v'(x)) = Io(z)v(z).

The extra minus sign in the constant —\ is not necessary, but is
chosen for later convenience.

Finding standing wave solutions u(z,t) = w(t)v(z) requires find-
ing solutions of the two ordinary differential equations (12.2). The
differential equation for w(t) has solutions which depend on whether
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A is positive, negative, or zero:

w(t) = A+ Bt if A =0,
(12.3) w(t) = Ae™V"M 4 BeV M if A <0,
w(t) = Acos(VAt) + Bsin(VAt) if A>0.

The differential equation for v(z), however, cannot be solved explic-
itly in general, and so we will simply let v(z) denote a solution of
—(T(2)v'(z)) = Ap(z)v(z). Hfu(z,t) = w(t)v(z) is nonconstant, then
u(z,t) forms a standing wave solution of the wave equation (12.1).
The function u(z,t) = w(t)v(z) is a standing wave of a finite
string with fixed ends u(0,¢) = u(L,t) = 0 if the profile shape v(x) is
a nonzero solution of
—(T(z)v'(z)) = Ap(z)v(z), 0<2z<L,
(12.4) v(0) =0,
0

The function v(z) = 0 for all = certainly satisfies this boundary value
problem regardless of the choice of \; however, u(z,t) = w(t)v(z) =0
is not considered a standing wave. It can be shown that if p(z) is
a positive continuous function and T'(z) is a positive differentiable
function, then the only values of A which permit nonzero solutions of
the boundary value problem (12.4) are positive and form an increasing
sequence of real numbers

O0< A <A< A3 <.

The proof of this can be found in a number of advanced books on or-
dinary differential equations and boundary value problems; see [MM,
Chapter 4], for example. With such a A, in the boundary value prob-
lem (12.4) and its resulting nonzero solution v,(x), the standing wave
u(z,t) = w(t)v(z) is completed by finding w(t). Since A = A\, > 0,
the function w(t) is constructed by the third form in (12.3). The
resulting function u(z,t) = w(t)v(z) given by

(12.5) U (2,8) = (A cos(v/Ant) + Bsin(y/Ant))vn(z)

forms a standing wave solution of the nonhomogeneous string with
fixed ends.
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Figure 12.1. The third mode of vibration for a nonuniform string.

12.3. Modes of vibration

The standing wave solution (12.5) is called the nt* mode of vibra-
tion of the string with fixed ends. As in the case of constant density
p and tension T, this mode of vibration can be rewritten as

Un(z,t) = Rcos(v/ At — 6)vn(z)

for constants R and é found in terms of A and B. This shows that
the standing wave has a profile shape of v, (z) that is scaled vertically
by an amount which oscillates between —R and R. The (circular)
frequency at which the profile shape oscillates is w,, = v/\, cycles per
27 seconds, or
_

fo=

m

cycles per second (Hertz). Each f, is called a natural frequency of
the string.

In Section 11.3 it was shown that if T'(z) and p(z) are constant
(with ¢2 = T//p), then the profile shape of the n** mode of vibration is
sin(nmz/L). When T'(z) and p(z) are not constant it is generally not
possible to explicitly solve (12.4) to determine the profile shape v, (z)
of the n** mode of vibration. The mode shape, however, will closely
resemble sin(nmz/L). An example of the third mode of vibration for
a nonuniform string is shown in Figure 12.1; compare this with the
third mode of a uniform string shown in Figure 11.5. The restricted
vibration of the string in this figure suggests that the left part of the
string is denser and/or under higher tension.
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Figure 12.2. Third modes of vibration for three different
strings in Exercise 12.1.

Exercise 12.1. Shown in Figure 12.2 are the third modes of vibra-
tion for three different strings. Use your intuition about string density
and tension to match the following string densities and tensions with
the mode of vibration.

(a) p(z) =1+102%,  (b) p(z) =1, (c) p(z) =1,
T(z) =1, T(z) =5 — 4z, T(z) =1.

12.4. Numerical calculation of natural
frequencies

In Section 11.4 it was shown that if T'(x) and p(z) are constant, then
the natural frequencies of the string are

c 2c 3c
where ¢ = \/T/p. When T(z) and p(x) are not constant, the n'"
frequency is given by f, = v/A,/(27) where ), is the n*" value of X
for which the boundary value problem (12.4) has a nonzero solution
vn(z). In general, however, it is not possible to explicitly compute
the values of \,,. One procedure for constructing numerical approxi-
mations of these values of A is called the shooting method.

To illustrate this method, we will look for the first natural fre-
quency f; = v/A1/(2) of a string by finding an approximation to A;.
The profile v; (x) of this mode shape will resemble the shape sin(7wz/L)
of a uniform string. In particular, vi(z) will satisfy v(0) = 0 and
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v(L) =0, and will have only one local extreme point between z = 0
and z = L.

An initial approximation of A\; can be made by approximating
the string tension T'(z) and density p(x) by their average values,

1 [F 1 [k
T = = = — .
b= | T@ds po= [ oty

Replacing T'(z) and p(z) with Ty and pg in (12.4) yields the boundary
value problem
—v"(z) = Fv(z), 0<zx<L,
v(0) =0,
v(L)=0

where ¢ = 1/Ty/po. The first natural frequency of the string repre-
sented by this constant coefficient problem is fl(o) = ¢/(2L), so an
initial approximation of A; is /\(10) =(2r fl(o))2 = 2Ty /(poL?).
An indication of how close the approximation )\50) is to A1 can be
made by solving the following initial value problem:
~(T () (2)) = \Vp)v(z), 0<z<L,

(12.6) v(0) =0,

v'(0) = 1.
In general this cannot be done explicitly; however, most computer
algebra systems or numerical software packages contain routines for
numerically solving initial value problems such as this one. Assuming
the solution v(x) of this initial value problem has been computed,
examine the value of v(z) at the right endpoint * = L. If v(L) is
zero, then v(zx) satisfies all of the conditions of the boundary value
problem (12.4), namely

~(T()' (@) = Dp(@)p(z), 0<z<L,

v(0) =0,

v(L) =0.
In this case, if the solution v(z) resembles sin(wz /L), then v(z) is the
profile shape of the first mode of vibration, and Aﬁ‘” is exactly Aj.
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L =

Figure 12.3. Solution of the initial value problem (12.6)
when /\ﬁo) < A1.

Figure 12.4. Solution of the initial value problem (12.6)
when A% > ;.

In practice, the value of v(L) will not be zero after solving the
initial value problem (12.6), since )\50) was only an approximation of
Ar- fv(L) > 0 (see Figure 12.3), then the value of ,\50) was too small
and the next guess for \; should be made larger. If v(L) < 0 (see
Figure 12.4), then the value of )\go) was too large and the next guess
for A; should be smaller.

A bisection approach can be used to create an iteration scheme
for finding the next approximation of A;: if v(L) > 0 when A = a
and v(L) < 0 when A = b, then let the next approximation be the
midpoint value )\gl) = %(a+ b). As this process is repeated, the value
of v(L) becomes closer to 0 as the value of )\gk) approaches A\;. The
fundamental frequency of the string is then estimated at each step by

A AP @),

Exercise 12.2. Consider a string with fixed ends and length L =1
which has constant tension T' = 1 but variable density p(z) = 1+ z?.
The modes of vibration for this string have profile shapes v(x) which
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are solutions of

(a)

(b)

—"(2) = M (1 +2%)v(z), 0<zx<I1,
v(0) =0
v(l) =0.

Compute the average tension Ty and average density py of

the string. Then let ¢ = 1/Ty/po and form an initial approx-

imation fl(O) =c¢/(2L) of the string’s first frequency f.

Compute A§°’ = (27 fl(o))Q‘ Then use computer software or a
graphing calculator to numerically solve

—"(2) =220 +2*(z), 0<z<1,

v(0) =0,

v'(0) = 1.
A graph of the result v(z) should resemble sin(nz) over the
interval [0, 1]; however v(1) is not zero.
Based on part (b), is the value /\(10) smaller or larger than
A1? Use this to make a new guess )\51) for A\; and repeat part
(b) with )\50) replaced by /\(11). If needed, choose different
values of )\51) and repeat part (b) until the value of v(1) is
approximately zero.

Once you have found a value of ,\5” for which v(1) is close
to zero, estimate the first natural frequency of the string by

fima/ A ).

The resulting graph of v(z) made by solving part (b) with /\(11)
will be the profile shape of the first mode of vibration. Does
the profile shape appear to be biased towards the heavier end
of the string or the lighter end of the string?



Chapter 13

Superposition of
Standing Waves

The sum of two traveling waves can form a standing wave, such as
in the example u(z,t) = sin(z — t) + sin(z + t) = 2cos(¢) sin(z). By
adding standing waves together, we can form more general functions
called compound waves. Just as the d’ Alembert formula used traveling
waves as the building blocks from which to construct solutions of the
wave equation for an infinite string, here we will use standing waves
as the basic building blocks for constructing solutions of the wave
equation for a finite string.

13.1. Finite superposition

If u(z,t) and v(z,t) are functions which represent two waves, then
the function w(z,t) = au(z,t) + bu(z,t) is called a superposition
of u and v. The principle of superposition is a property of linear
homogeneous differential equations which allows one to construct new
solutions by superimposing two or more known solutions together.

First we will verify that the boundary value problem
Uy = CPUpy, 0<z<L,t>0,
(13.1) u(0,t) =0,
u(L,t) =0
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has the property that a superposition of two of its solutions is also a
solution. If u(z,t) and v(z,t) are two solutions of (13.1), then

Ut = C2u11, Vit = 02’03;3;,
u(0,t) =0, v(0,t) = 0,
u(L,t) = 0, w(L,t) = 0.

Let w(x,t) be the superposition constructed by forming the combi-
nation w = au + bv for some constants a and b. Then
wyr = (au + by
= augy + buy
= a(Pugz) + b(c*vgr)
= c?(au + bv)zz
= Wy,

shows that w is also a solution of the wave equation. The values of
w(z,t) at the boundaries x = 0 and z = L are

w(0,t) = au(0,t) + bv(0,t) =a-0+b-0=0,
w(L,t) = au(L,t) + bv(L,t) =a-0+b-0=0,
so w satisfies the same boundary conditions as v and v. This shows

that the superposition w of solutions of the boundary value prob-
lem (13.1) is yet another solution of (13.1).

Exercise 13.1. Show that the principle of superposition does not
apply to solutions of the following boundary value problem:

Uy = CPUpy, 0<2x<L,t>0,
U(O, t) =1,
u(L,t) =0.
In Section 11.3, the standing waves
Up(z,t) = [An cos(nmet/L) + By, sin(nmet/L)] sin(nma /L)

were found to be solutions of the boundary value problem (13.1) for
each positive integer n. By the principle of superposition, the sum

N
w(x,t) = uy(x,t) +ua(z,t) + - +un(@,t) = > un(z,t)
n=1
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creates yet another solution of (13.1), given by
N
(13.2) u(x,t) = Z[An cos(nmet/L) + By, sin(nwct/L)] sin(nmz/L).
n=1
The superposition of standing waves such as this is called a com-
pound wave. The constants A, and B, are arbitrary and can be
picked so that u(z,t) represents a number of different initial condi-
tions.

Example 13.2. Consider the initial boundary value problem for a
string with length L = 1 and wave speed ¢ = 1:

Utt = Ugg, 0<.T<1,t>0,

u(0,t) =0,
u(1,t) =0,
u(z,0) =0,

ut(z,0) = 2sin(rzx) — 3sin(2nz).

By superimposing standing wave solutions, the compound wave (13.2)
given by
N
(13.3) u(z,t) = Z[An cos(nmt) + By, sin(nnt)]sin(nnz)
n=1
also satisfies the wave equation and the two boundary conditions. At
t = 0 the initial position

N
u(z,0) = Z Ay sin(nmz)
n=1
is supposed to be zero; this can be accomplished by selecting each A,
to be 0. The velocity

N
u(z,t) = Z[—Anmr sin(nmt) + Bpnmw cos(nnt)] sin(nmz)
n=1
att=0is
N
uy(z,0) = Z nm B, sin(nrx)
n=1

= mBysin(rz) + 27 By sin(2nz) + - - - + NwBy sin(Nrwz).
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This matches the given initial velocity 2sin(rz) — 3sin(27z) if we
select N = 2 and pick the coefficients B,, so that

7I'Bl = 2, 27I'Bg = -3.

With N = 2, By = 2n, By = —3/(27T) and A; = Ay = 0, the
solution (13.3) to the given initial boundary value problem is then

u(z,t) = % sin(7t) sin(mx) — 2% sin(27t) sin(27x).
Exercise 13.3. Find the solutions of
Ut = Uge, 0< <1, t>0,
u(0,t) =0,
u(l,¢) =0
which satisfy the following initial conditions:
(a) u(z,0) = 10sin(mz) + 3sin(4nz) and u(z,0) = 0.
(b) u(z,0) = sin(27rz) and us(z,0) = —3sin(2rz).

Animate the results, noting that these solutions are not standing
waves.

13.2. Infinite superposition

In the previous section, the principle of superposition was used to
combine a finite number of standing waves to form a more general
compound wave. Taking superposition one step further, one can
also consider the superposition of all of the standing wave solutions
Un(z,t) of (13.1) to get
oo
(13.4) u(z,t) = Z[An cos(nmet/L) + By sin(nmct/L)] sin(nmz/L).
n=1
Some care must be taken, since this is an infinite series and not all
infinite series converge. If the numbers A, and B,,, however, decrease
to zero quite rapidly as n — oo, then the series is guaranteed to
converge to a function u(z, t) which is still a solution of the boundary
value problem (13.1). Armed with this general solution, our task
again is to pick the coefficients A, and B, so that u(z,t) matches
given initial conditions.
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Exercise 13.4. How should the coefficients A,, and B,, in (13.4) be
picked so that u(z,t) is a solution of the following initial boundary
value problem?

U = Uzz, 0< <1, >0,
u(0,t) =0,
u(1,t) =0,
u(z,0) = sin(rz) — sin(3nz) + & sin(5rz) — - -,
uy(z,0) = 0.

Exercise 13.5. The initial position u(z,0) = f(z) given in the pre-
vious problem can be written as the infinite series
& (_1)k+1

f@) =) o sin((2k — D7z).
T ;(%-1)2811

Use a computer algebra system or graphing calculator to graph the

truncated series
N

(_1)k+1
= ! k-1
fN(‘T) ; (2k — 1)2 Sln((2 )7T$)
over the interval [0,1] for N = 5, 10, and 20. By looking at the
graph of fv as N increases, what function does fy(z) appear to be
approaching as N — oo?

At this point it appears that we are limited to only special types
of initial conditions. The initial data u(z,0) = f(z) and w;(z,0) =
g(z) of the example and problems in this chapter are all of a special
form, namely, written explicitly as a combination of the functions
sin{(nmz/L). This allows the constants 4,, and B, in (13.2) or (13.4)
to be selected by inspection in order to match the initial conditions.
For a function such as f(z) = z which is not explicitly given in terms
of sine functions, we need a method for expanding f(z) as

oo
f(z) = aysin(rz/L) + agsin(2rz /L) + -+ - = Z ansin(nrzx/L).
n=1
The resulting series is called the Fourier sine series of f(x) and will
be discussed further in the next chapter.
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Chapter 14

Fourier Series and the
Wave Equation

In this chapter it will be shown how to rewrite the initial position
u(z,0) = f(x) and velocity u;(z,0) = g(z) of a string with fixed ends
as sums of the string’s mode shapes v, (z) = sin(nwz/L). Then the
solution of an initial boundary value problem for the string will be
constructed by the principle of superposition.

14.1. Fourier sine series

The task of taking a function f and finding numbers a,, so that
f(z) = arsin(nrz/L) + agsin(2rx/L) + - - -

(14.1) _ i an sin(nrz/L)
n=1

is one problem within Fourier analysis. Fourier analysis is an area of
mathematics concerned with the representation of arbitrary functions
in terms of certain fundamental functions. Joseph Fourier’s contribu-
tions in the early 19th century to trigonometric expansions and their
applications in physics led to the naming of this branch of mathemat-
ics. Additional material on Fourier analysis and its application to
partial differential equations can be found in a number of textbooks,
including [Far, Fol].
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102 14. Fourier Series and the Wave Equation

The functions f which we will express in the form (14.1) are those
which satisfy f(0) = 0 and f(L) = 0. Thinking in terms of a string
with fixed ends and initial position u(z,0) = f(x), the conditions
f(0) =0and f(L) = 0 are simply requiring that the ends of the string
are fixed at time ¢t = 0 as well. A similar restriction g(0) = g(L) =0
for the initial condition u;(x,0) = g(x) requires that the two ends of
the string are not moving at time t = 0.

A careful proof that a function f : [0, L] — R can be written in
the form (14.1) for all 0 < z < L not only requires f(0) = f(L) =0,
but also assumes f is continuous and f’ is at least piecewise continu-
ous with jump discontinuities. If f is such a function, then an impor-
tant result in Fourier analysis shows that there is a unique sequence
of numbers a1, az,as, ... such that f(z) can be written as (14.1) for
all z in [0, L]. This infinite combination of sine functions is called the
Fourier sine series expansion of f on the interval [0, L].

The coefficients a,, in the Fourier sine series (14.1) can be com-
puted by exploiting the following property of the trigonometric func-
tions v,(z) = sin(nmz/L): for any two mode shapes v, and v,
(n # m), the integral fOL Un(8)vm(s)ds is zero. To verify this, first
note that the integral

L L
/ Un(8)v, (s)ds = / sin(nms/L) sin(mns/L)ds
0 0
can be rewritten using a trigonometric identity as
L L
/ Vn(8) U (8)ds =/ %[cos((n— m)ms/L)
0 0
— cos((n + m)ws/L)} ds.
Evaluating and simplifying the right side when n # m shows that
L
(14.2) / U (8)Um(s)ds = 0.
0

This property, called orthogonality, provides a method for computing
the coefficients a,, in the Fourier series (14.1). Writing (14.1) as

flz)= Z anVn(T)
n=1
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and multiplying both sides by v,,(x) gives

f(@)vpm(z) = vz Z anvn(z) = Z U (T)V (T)
n=1

Integrating from 0 to L then results in
/ F(8)vm(s ds—-/ Zanvn $)Um(8)ds

= an vn(s)vm(s)ds.

From the orthogonality property (14.2) of the mode shapes, the in-
tegral fo U (8)vm (8)ds is zero for each n which is different from m.
The only term in the series which may not be zero is the one for which
n = m, and so the infinite series reduces to a single term,

L L
/ f(8)vm(s)ds = am/ U (8)um(8)ds.
0 0
Computing the integral on the right side of this equation shows that

L

L L
‘/0 vm(s)vm(s)ds=/0 sin?(mns/L)ds = 3

and so the value of the coefficient a,, is given by the expression

L
(14.3) O = %/0 f(s)sin(mns/L)ds

Example 14.1. In this example we will write the function
fl@)=1-2z-1]

in terms of its Fourier sine series on the interval [0,1]. Note that f
is continuous, f’ is piecewise continuous (with a jump discontinuity
at x = 1/2), f(0) = 0, and f(1) = 0. From Fourier analysis it is
then possible to express f(z) as an infinite series >~ | a, sin(nmz)
for 0 <z < 1. With L =1 in (14.3), the coefficients a,, are computed
by

1
an = 2/ (1 — |25 —1|)sin(nns)ds.
0
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This integral can be split into two integrals depending upon whether
2s > 1 or 2s < 1 to accommodate the absolute value by

1/2
an = 2/ (1 —|2s — 1]) sin(nws)ds
0

1
+ 2/ (1 —]2s — 1|) sin(nws)ds
1/2

1/2 1
= 2/ 2ssin(nms)ds + 2/ (2 — 2s)sin(nmws)ds.
0 1/2
Integrating by parts in each integral and simplifying results in
8sin(nm/2)
s A
The Fourier sine series expansion of f(z) is then
oo .
(144) 1-|2z-1=) 8sin(nt/2) i (nmz), 0<z <1,

n2m?
n=1

Noting that sin(nm/2) is zero when n is even, one could rewrite this
series using only the odd terms by setting n = 2k — 1.

The N*" partial sum of the Fourier sine series for f(z) is defined
to be the truncated sum

N
fr(x) = ansin(nrz/L).
n=1

This is a sum of a finite number of terms of the Fourier series which
provides an approximation of f(z) on the interval 0 < z < L. For
the function f(z) in Example 14.1, the partial sums f;(z) and f3(z)
found by taking one and three terms of the series (14.4) respectively
are

fi(z) = = sin(ra),
8 . 8 .
fa(z) = = sin(rz) — s sin(37z).

Figure 14.1 compares the graph of the function f(z) with the graphs
of the partial sums fi(x), f3(z) and fio(z).
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Figure 14.1. Comparing the graph of the function f(z) from
Example 14.1 (dashed) with the graph of the Nt partial sum
of its Fourier sine series (solid).

Similar Fourier series expansions can be made using cosine func-
tions, or a mixture of cosine and sine functions. For example, the
mode shapes for a string of length L with both ends free are

vo(z) =1, wi(x)=cos(mrz/L), waolx)=cos(2mz/L),....

An expansion of a function f(z) in terms of these mode shapes is
called the Fourier cosine series expansion of f(x).

Exercise 14.2. Find the Fourier sine series expansion on the interval
[0, 1] for the functions (a) f(z) = z(1—z) and (b) f(z) = 1—cos(2rz).
Then use computer generated plots or a graphing calculator to com-
pare the graph of f(x) with its partial Fourier sum f5(z).

Exercise 14.3. It is possible to extend the idea of Fourier sine series
to functions which do not satisfy the boundary conditions f(0) = 0
and f(L)=0. If f:[0,L] — R is any continuous function for which
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f’ exists and is continuous, then the Fourier sine series (14.1) with
the coefficients a,, computed by (14.3) still converges to f(x) at every
point z in the open interval 0 < z < L. At x = 0 and =z = L,
however, the Fourier sine series always sums to 0 since each mode
shape sin(nwz/L) is zero at these end points. If f(0) or f(L) is not
zero, then (14.1) no longer holds at x =0 or z = L.

(a) Find the Fourier sine series expansion for f(z) = x on the
interval [0, 1].

(b) By graphing the partial Fourier sums fi(z), fs(z), fio(x),
and foo(x), for which value(s) of z in the interval [0, 1] does it
appear that the Fourier series will not converge to f(z) = z?

Exercise 14.4. The companion MATLAB software (see page xiii)
includes two scripts for plotting Fourier series. The script wvfourl
is a graphical interface for quick plotting of partial sums of Fourier
sine or cosine series of a function. The script wvfour2 is a graphical
method for choosing values of the coefficients a,, in the Fourier sine
series expansion for f(z). In MATLAB, run each script and construct
Fourier series of the functions f(z) = sin(2nz), f(z) = 2(1 — z), and

flz) ==z

14.2. Fourier series solution of the wave
equation

The ability to compute the Fourier sine series of a function now gives
us a method for rewriting the initial position u(z,0) = f(z) and
initial velocity u:(x,0) = g(x) of a string in terms of mode shapes of
the string. Consider the following initial boundary value problem for
the string:

U = CPUgy, 0<z<L,0<t< 00, (PDE)
u(0,t) = 0, (BC)
(14.5) u(L,t) =0,
u(z,0) = f(z), (1C)
u(z,0) = g(x)

To find a solution of this problem, we can start by superimposing
the string’s modes of vibration to write down a general solution of
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the wave equation which satisfies the boundary conditions u(0,¢) =0
and u(L,t) =0 as

(14.6) u(z,t) Z[A cos(nmet/L) + By sin(nnct/L)]sin(nmz/L).

n=1

The next step is to pick the arbitrary constants A, and B, so that
u(z,0) and u(z,0) match the initial conditions (IC) given in (14.5).

The constants A, and B, are found by first rewriting the ini-
tial position and velocity in terms of the mode shapes sin(nmz/L).
Suppose that the initial position and velocity in (14.5) have been
expressed in terms of their Fourier sine series as

Z ansin(nrz/L), g(x) = Z by sin(nmwz/L).
n=1

n=1

Matching the initial position u(x,0) from (14.6) with the Fourier se-
ries of f(x) gives the condition

u(z,0) = Z Apsin(nmz/L) = Z an sin(nmwz/L).
n=1 n=1

This shows that A,, = a,, the n*" Fourier sine coefficient of f(x). To
find the values of B, note that the derivative u;(z,t) of the super-
position (14.6) is

i [ - —A sin(nmct/L)

n=1

—L—Bn cos(mrct/L)] sin(nrz/L).

Matching u;(x,0) with the Fourier series expansion of the initial ve-
locity g(x) results in

uy(z,0) = Z n—szn sin(nmz/L) = Z by, sin(nwz/L).
n=1

n=1

This shows that (nwc¢/L)B,, = b,, and so B, = (b,L)/(nnc). Now
that we have found the constants A, and B,, the solution of the
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initial boundary value problem (14.5) can be written as
(14.7)

3 ncos(nmwet/L) + buL sin(nmet/L)| sin(nmz/L).
— nme

Example 14.5. Consider the displacement u(z,t) of a string with
fixed ends,
Ut = Uge, 0< <1, >0,
u(0,t) =0,
u(l,t) =0,
whose initial position and velocity are
u(z,0) =0,
us(z,0) =1— |22 — 1].

As a superposition of mode shapes, the solution u(z,t) will have the
form (14.7) with string length L = 1 and wave speed ¢ = 1, so

nm

> b

(14.8) u(z, t) = Z [an cos(nmt) + — sin(mrt)] sin(nmz).
n=1

The initial position is already in terms of the mode shapes sin(nnx)

of the string, since

u(z,0) =0= Z an, sin(nrz),

n=1
with a, = 0 for all n. The initial velocity was written in terms of
sin(nmz) in Example 14.1 as

u(z,0)=1—-12z - 1| = an sin(nnx),

with b, = 8sin(nn/2)/(nm)% Substituting b, = 8sin(nmr/2)/(nm)?
and a,, = 0 into (14.8) gives

>\ 8sin(nm/2) . .
(14.9) u(z,t) = nX::l R e sin(nmt) sin(nnz)

as the profile of the string at time ¢.
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t=0 t=03 t=0.6 t=09
0.5 0.5 0.5 0.5

Figure 14.2. Animation of the string represented by Example 14.5.

Note that the initial boundary value problem in the last example
represents a fixed string which initially lies in its equilibrium posi-
tion with u(z,0) = 0. At time ¢t = 0, the string is given an initial
“kick” upward with velocity u¢(z,0) = 1 — |2z — 1| at position z.
An animation of the resulting displacement u(z,t) can be made by
taking a partial sum of the series representation of u(z,t). Using the
first twenty terms in the sum (14.9), four frames of animation of the
partial sum

20

8sin(nmr/2) . .
ugo(z, t) = ; a5 sin(nmt) sin(nrx)
are shown in Figure 14.2.

Exercise 14.6. Consider the displacement of a vibrating string with
fixed ends given by

Ut = Uge, 0< <1, >0,
u(0,t) =0,
u(1,t) = 0.
Use the Fourier sine series expansions found in Exercise 14.2 to write

down the series solution of the vibrating string with the following
initial conditions:

(a) u(z,0) =2(1 —x), wu(z,0)=0.
(b) u(z,0) =0, wu(z,0)==z(l-2z).

Animate the solutions by approximating u(z,t) with a partial sum of
the series solution for u(z, ).
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Part 3

Waves in Conservation
Laws
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Chapter 15

Conservation Laws

While the wave equation has many solutions which illustrate waves
and their properties, wave behavior can be found in applications
which are modeled by other partial differential equations. In the fol-
lowing chapters we will look at a class of mathematical models which
are derived from conservation laws. Later it will be shown that many
of these models possess solutions with wave behavior.

15.1. Derivation of a general scalar conservation
law

A conservation law is an equation which accounts for all of the ways
that the amount of a particular quantity can change. This accounting
is one of the basic principles of mathematical modeling and can be
applied to a variety of quantities such as mass, momentum, energy,
and population.

Suppose that a medium, essentially one-dimensional and posi-
tioned along the x—axis, contains some substance which can move
or flow. This quantity could be, for example, cars moving along a
section of road, particles of pollutant in a narrow stream of water,
or heat energy flowing along a wire. For brevity, let Q) represent this
quantity (cars, particles, energy, etc...). In this section we will derive

113
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Figure 15.1. Profile at time t of the density u(z,t) of a quan-
tity in a one-dimensional medium.

Figure 15.2. A short segment S of the medium over the in-
terval [a, b].

a general conservation law which describes the amount of @ in the
medium at time t.

Let u(z,t) measure the density or concentration (amount per unit
length) of @ at position z of the medium at time ¢ (Figure 15.1). The
value of u could indicate, for example, the density of traffic (cars per
mile) or concentration of pollutant (grams per meter) at position z.

Now let S be any small segment of the medium with endpoints lo-
cated at © = a and x = b with a < b (Figure 15.2). It will be assumed
that changes in the amount of the quantity @ within this segment can
occur in only two ways: either ) enters or leaves S through its ends at
z =a and z = b, or ) is somehow being added (created) or removed
(destroyed) from the medium within the segment. By accounting for
all of the ways in which the total amount of @) can change within §,
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we are forming a general conservation law for Q:

The net (time) rate| | The rate at which @ enters
of change of the total | =| or leaves S through the left
amount of  in S endz=a

(15.1) The rate at which @ en-
+ |ters or leaves S through
the right end x = b

+ The rate at which @ is cre-
ated or removed within S |

The next step will be to quantify the different parts of this conserva-
tion principle.

Since u(zx, t) is the amount of Q) per unit length along the medium,
the total amount of () in the segment S at time ¢ is computed by the
integral f: u(z,t)dr. As the quantity @ flows through the medium,
the amount of @ within S can change over time; the rate at which
this amount changes with respect to time is given by the derivative

b

(15.2) il

u(z,t)dzx.

The rate at which @ enters S through either of its ends will be
described by a flux function. Let ¢(z,t) denote the rate (amount
per unit time) at which @ is flowing past position = at time t. A
positive value ¢(z,t) > 0 indicates that the flow is in the direction
of increasing x, while ¢(z,t) < 0 means the flow is in the opposite
direction. Such a function is called the flux. The rate at which @
enters S through the end z = a is then ¢(a,t). If ¢(a,t) is positive,
then @ is flowing into S through the left end at z = a, while ¢(a,t) <0
indicates @ is flowing out of S through the left end. Similarly, the
rate at which @ enters S through the right end at x = b is —¢(b, t).
The extra minus sign at * = b is needed since ¢(b,t) > 0 indicates
Q is flowing to the right at £ = b, which decreases (negative rate)
the amount of Q) in the segment S (see Figure 15.2). The net rate at
which @ enters S through its ends is then given by

(153) ¢(a7t) - ¢(bvt)
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The addition or removal of @) within the segment S will be repre-
sented by a source function. Let f(z,t) be the rate (amount per unit
time per unit length) at which @ is being added to or removed from
the medium at position x and time ¢. Such a function f is called a
source function. A positive value f(z,t) > 0 indicates that @ is
being created or added to the medium at position z, while f(z,t) <0
means @ is being destroyed or removed. The total rate (amount per
unit time) at which @ is being created within the segment S at time
tis

(15.4) /b flz, t)dx

Substituting the measurements (15.2), (15.3), and (15.4) into the
conservation principle (15.1) results in an equation called a conser-
vation law in integral form:

b b
(15.5) % u(z,t)dzr = ¢(a,t) — ¢(b,t) + / flz,t)dz

An alternative form of the integral conservation law can be de-
rived when u and ¢ are assumed to have continuous first derivatives.
With this assumption (15.5) can be rewritten as

b
/utazt /qu:ctdz-l-/fa:tdx,

b
/ (we(z,t) + ¢u(z,t) — f(z,t))dz = 0.

If us, ¢z, and f are all continuous, then the fact that this integral
is zero for every a < b along the medium implies that the integrand
u; + ¢, — f must be zero. This results in a conservation law in
differential equation form:

(15.6)

15.2. Constitutive equations

so that

The conservation law (15.6) is a very general equation which relates
three functions: the density function u, the flux ¢, and the source
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term f. It simply states that the rate of change of the amount of @
at position x depends on the rate at which @ flows past z (flux) and
the rate at which @ is created at x (source). In order to determine
u(z,t), more must be known about the flux ¢ and the source term f.

The source term f is usually determined or specified from the
particular physical problem behind the conservation law. In many
cases, it is zero.

Even when f = 0, us+¢, = 0 is still only one differential equation
for two unknowns u and ¢. A second equation relating u and ¢ is
often given, based on an assumption about the physical process being
modeled or on experimental evidence. Such an equation is called a
constitutive equation. In general, our models will consist of two
parts,

U+ ¢z = f Conservation Law
(Fundamental law of nature),

Relationship between Constitutive Equation
u and ¢ (Approximation based on experience).

The flux ¢ often depends on u. For example, if the rate (amount
per time) at which the quantity @ flows past a point depends on the
concentration of @, then the flux is a function of density and forms an
explicit constitutive law ¢ = ¢(u). When this is the case, the chain
rule gives ¢, = ¢'(u)uy, so that the conservation law (15.6) can be
written as

(15.7) lu + ¢/ (w)u, = fJ

Example 15.1. The inviscid Burgers equation
us + ut, =0

is an example of a conservation law in the form (15.7). In this equation
the source term f(x,t) is zero and the flux ¢ is a function of u for
which ¢’(u) = u. One possibility for the flux term is the constitutive
equation

plu) = dut.
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The inviscid Burgers equation can then be written in conservation
law form,

ue + (3u?)_=0.

x

Exercise 15.2. Write the following equations in conservation law
form u; + ¢, = 0 and identify the flux ¢:
(a) u+cu,=0 Advection or convection equation
(b) u +wuuy — Dug, =0 Burgers’ equation
(¢) ur+uuz+uzg, =0 KdV equation

Exercise 15.3. Sometimes there are alternative ways of writing con-
servation laws depending upon which terms are considered fluxes and
which terms are considered sources. What are the suggested flux and
source terms of the Burgers equation when it is written in the forms
us + vty = Duge and uy + vu, — Dug, = 07



Chapter 16

Examples of
Conservation Laws

In this chapter, conservation laws and constitutive equations are for-
mulated for the physical applications of a plug flow reactor, diffusion,
and traffic flow.

16.1. Plug flow chemical reactor

A plug flow chemical reactor consists of a long tube in which a chem-
ical product A is fed into one end, a chemical reaction takes place
within the tube, and a resulting chemical product B is forced out of
the opposite end (Figure 16.1). We will follow [Log, p. 104] to formu-
late a conservation law for the amount and distribution of chemical
A within the reactor tube at time ¢.

Let a(z,t) denote the concentration (mass per unit length) of
chemical A at position x along the tube and time ¢. From the previous
chapter (Section 15.1), a general conservation law for a(x,t) will have
the form

(16.1) a+ ¢z = f

Chemical A Chemical B
\ S

IN ouT

Figure 16.1. A plug flow chemical reactor.
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with flux ¢ and source f. In this application, the flux ¢(z,t) gives
the rate (mass per unit time) at which chemical A passes by position
x at time ¢. The source f(z,t) describes the rate (mass/time per unit
length) at which chemical A is removed from the medium at position
x by the chemical reaction.

To determine ¢, we will make a basic assumption that the chem-
ical mixture within the tube is moving from left to right with a con-
stant speed of ¢ (length per unit time). In this setting, the movement
of the mixture carries chemical A past position x at a rate of

oz, t) = ca(z, t)

with units mass per unit time. The equation ¢ = ca is an example of
a constitutive equation, an equation relating the flux ¢ and density a
based on modeling assumptions. This type of flux function describes
an advection or convection process in which changes in the value of
a(z,t) are due to movement of the medium.

Within the tube, the chemical reaction removes chemical A in the
process of forming chemical B. Here it will be assumed that the rate
at which this occurs is simply a percentage of the concentration of A
present, or

f(z,t) = —ka(x, )

mass/time per unit length of the tube where k > 0 is a constant. The
extra minus sign reflects the fact that the amount of chemical A is
decreasing.

With the flux ¢(z,t) = ca(z,t) and source f(x,t) = —ka(x,t),
the basic conservation law (16.1) becomes

Pzt(:r, t) + cay(z,t) = —ka(z,t).]

Exercise 16.1. Give a physical interpretation of the following initial
boundary value problem for the plug flow reactor:

a(z,t) +caz( 1) = —ka(z t), 0<z<L,t>0,
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X

O D)

Figure 16.2. Profile at time ¢ of the density u(z, t) of a pol-
lutant in a water pipe with a highly polluted section.

16.2. Diffusion

A second example of a conservation law will be formed to track a
pollutant spreading through water by diffusion. Suppose a long pipe
full of stagnant water becomes contaminated in a small section due
to a temporary break in the pipe (Figure 16.2). Letting u(z,t) be the
concentration (mass per unit length) of the pollutant at position z
and time ¢, a general conservation law for u(z,t) will take the form

Ut-l-(f)z:f.

As in the previous example, assumptions based on the physical prob-
lem will be needed to formulate ¢ and f.

In this application, the flux ¢(z,t) represents the rate (mass per
unit time) at which pollutant is passing by position x at time ¢. Since
the water within the pipe is not moving, the primary method that
the pollutant can flow through the water is by diffusion. In general,
a pollutant will flow from regions of high concentration to regions of
lower concentration in an effort to redistribute itself uniformly. For
example, suppose the concentration u(z,t) along the pipe at time ¢
has the profile shown in Figure 16.3. If z is a position along the
pipe for which the slope u,(z,t) is positive, then the pollutant should
flow left towards a region of lower concentration. Similarly, if z is
a position for which u,(x,t) is negative, then the pollutant should
flow to the right (Figure 16.3). A fundamental formulation of this
phenomena is Fick’s First Law of Diffusion,

¢ = —Duy,.
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X

Figure 16.3. Pollutant flows from regions of higher contam-
ination to lower contamination.

Here D is a positive constant, and the extra minus sign indicates that
the flow direction is opposite in sign from the slope u, of the graph
of u. This will be our constitutive equation.

The source function f(x,t) represents the rate (mass/time per
unit length) at which the pollutant is either entering or being removed
from the pipe at position z. If we assume that the break in the pipe
has been fixed so that no additional pollutant enters the pipe, and no
filtering or chemical reaction takes place which removes the pollutant,
then f =0.

With ¢ = —Du, and f = 0, the conservation law u; + ¢, = f
takes the form of the diffusion equation,

lut — Dug, = O.]

Exercise 16.2. Give a physical interpretation of the following initial
boundary value problem in terms of pollutant contaminating a pipe
full of stagnant water:

Uy — Dugp, =2, —oco<z<o00,t>0,

’LL(.’L‘, O) = f(x)7

lim wu(z,t) =0.
r—+oo

Exercise 16.3. Suppose that the water in the pipe is not stagnant,
but rather moves in one direction with a constant speed c. How does
the form of the flux ¢ change? Note that the flux now consists of two
parts, diffusion and convection. What is the resulting conservation
law?
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Figure 16.4. Continuous representation of traffic density
along a single lane road.

16.3. Traffic flow

Since its first developments in the mid 1950’s by M.J. Lighthill and
G.B. Whitham [LW] and P.I. Richards [R], the deterministic mod-
eling of traffic flow has yielded several examples of wave behavior.
Here we will follow parts of the books by Haberman [Habl] and
Whitham [Whi] to form conservation laws which model traffic flow,
and later observe wave phenomena arising from these models.

As a simplified example, consider automobile traffic moving along
a section of single lane road with no exits or entrances. Let u(z,t)
represent the density of cars (number of cars per mile) at position z
along the road at time ¢. The function u(z,t) in principle should be
a discrete valued function since cars are discrete objects; however, we
will assume that u(z,t) is a continuous representation of the traffic
density such as the one shown in Figure 16.4. As before, the basic
conservation law for the traffic density u(z,t) is

uy + ¢ = f.

In this conservation law, the source f(z,t) represents the rate
(cars/hour per mile) at which cars are added or removed from the
road at position . With the assumption that there are no exits or
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Car velocity v
(miles / hour)

Traffic density u (cars/mile)

Figure 16.5. Higher traffic density generally results in lower
traffic speed.

entrances to the road and that cars do not appear or disappear from
the road for any other reason, the source function f(z,t) is zero.

The flux function ¢(x,t) represents the rate (cars per hour) at
which cars are passing position x along the road at time t. To an
observer standing along the side of a road, the rate at which cars
pass by depends not only on the traffic density u, but also on the
traffic velocity v. If v is measured in miles per hour, then the flux ¢
is the product

¢ = u (cars/mile) x v (miles/hour) = uv (cars/hour).

Traffic velocity v is generally not constant and is related to factors
such as traffic density, weather, and time of day. As a simple model,
we will assume that the velocity v of the cars depends only on the
traffic density, and in particular, denser traffic results in lower speeds.
Suppose that drivers will travel at a maximum speed of v; miles per
hour on a road which has little or no traffic (u = 0). We will also
assume that traffic is at its maximum density u, cars per mile when
the cars have come to a complete stop (v = 0). A linear model of
this connection between traffic velocity and traffic density is shown
in Figure 16.5 and is described by the equation

U1
v=v; — —u, 0<u<Lu;.
Uy

The constitutive equation relating flux ¢ and traffic density w is then

(16.2) ¢ =uv=v(u—u?/u;) (cars/hour).
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With the car flux (16.2) and source function f(z,t) = 0, the
conservation law u; + ¢, = f modeling traffic density along the road
becomes

lﬁt +v1(1 — 2u/ur)u, = 0.'

Exercise 16.4. By estimating an average car length, determine a
value for u;, the maximum possible density of cars (cars per mile)
along a stretch of single lane road.

Exercise 16.5. Another model of traffic velocity as a function of
traffic density is v = kln(u;/u) where k is a positive constant. By
making a qualitative graph of v = kIn(u; /u), tell how driver behavior
described by this model differs from the driver behavior reflected in
the linear model shown in Figure 16.5. Using this model of velocity,
what is the resulting flux ¢ and conservation law for traffic density
u(x,t)?
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Chapter 17

The Method of
Characteristics

The concept of characteristics will be reintroduced in this chapter as
a method for constructing a solution of an initial value problem of
the form

ur+ ¢, =0, —oco<x<oo,t>0,

(17.1) u(z,0) = up(z).

Similar to characteristic lines for the wave equation, characteristics
are special curves in the xt—plane which transmit the given initial
profile u(x,0) forward in time. Characteristics will be used to solve
initial value problems of the form (17.1) for the advection equation,
general linear conservation laws, and nonlinear conservation laws.

17.1. Advection equation

If the constitutive equation relating a density u and flux ¢ is of the
form ¢(z,t) = cu(z,t) for some constant ¢, then the initial value
problem (17.1) becomes

(17.2a) U +cur, =0, —oco<z<oo,t>0,
(17.2b) u(z, 0) = up(z).

127
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S (x(), 1)

(%0, 0) X

Figure 17.1. A curve (z(t),t) in the zt—plane.

The conservation law here is the advection equation, and the initial
condition gives us the profile of the solution u(z,t) at time t = 0. We
will now describe the method of characteristics for finding the value
of the solution v at points (z,t) for a later time ¢ > 0.

The method of characteristics uses special curves in the zt—plane
along which the partial differential equation (17.2a) becomes an ordi-
nary differential equation. Suppose (z(t),t) is a curve in the zt—plane
starting from the point (z(,0) on the x—axis (Figure 17.1). As
(z(t),t) moves along this curve, the value of u(z(t),t) changes at
the rate of g—tu(a:(t), t). By the chain rule, this derivative is
(17.3) d—u(x(t),t) = ugg(x(t),t)éE + ug(2(2),8).

dt dt
The right hand side u; + %uz resembles u; + cu,, part of the conser-
vation law (17.2a). In fact, if we select the curve (z(t),t) so that

dx

at = ©
the chain rule (17.3) and the conservation law (17.2a) give

%u(x(t), t) = w(x(t), 1) + cug(x(t),t) = 0.

This implies that the value of u is constant along this particular curve,
and so the value of u at each point on the curve is the same as the value

of u at the initial point (zo,0). From the initial condition (17.2b),
this value is seen to be ug(zp).
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Figure 17.2. Characteristics x — ¢t = zo of the advection
equation u; + cuz = 0.

The special curve (z(t),t) starting at the point (zg,0) is deter-
mined by the conditions
d
d—f =¢, z(0) = xq.
Solving this initial value problem shows that z(t) is given by
T = ct + xg.

This curve is called a characteristic curve or characteristic of the
equation u; + cuz = 0. As shown in Figure 17.2, the characteristic
curves here are parallel lines in the zt—plane, each with slope 1/c
but starting at different initial points (zp,0) on the z—axis. The
derivative dx/dt is called the speed of the characteristics, which for
this problem is c.

Using the fact that u is constant along the lines x = ct + z¢, we
can construct the value of u(z,t) at any point (z,¢). Given a point
(z,t), a characteristic line extends back from (z,t) to the point (z, 0)
on the x—axis where z( is given by o = = — ct. Since the function
u(z, t) is known to be constant along a characteristic, the value of u at
(z,t) is the same as the value of u at (x¢,0). By the initial condition
(17.2b), this value is

u(z, t) = u(zo,0) = up(xo) = up(z — ct).

The solution u(z,t) = ug(z — ct) of (17.2) is a traveling wave with
initial profile up(x) transmitted through the medium with velocity c.
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Example 17.1. Consider the initial value problem for the advection
equation

us +4u, =0, —oco<x<oo,t>0,
u(z,0) = arctan(x).

Along a curve (z(t),t), the derivative of u(z(t),t) is

& (e (0),0) = wla(t), ) + %

Picking z(t) to satisfy

uy (z(t),t).

dx
dt
results in the characteristic curve x = 4¢ + x¢. Along this curve,
d
T
so u(z(t),t) has a constant value along = = 4t + 2. Now at any point
(z,t), the characteristic line through (z,t) extends back to the point
(20,0) on the r—axis where g = = — 4t. Since u is constant along
this characteristic, the value of u at (z,t) is

=4, z(0)=u=xg

(@(8), 1) = we(x(t), t) + dug(x(t),t) = 0,

u(z,t) = u(xg, 0) = arctan(xg) = arctan(x — 4t).

The solution of this initial value problem is a traveling wave with
profile arctan(z) moving with speed 4.

Exercise 17.2. Use characteristics to find the solution of
us +2u, =0, —oco<zx<oo,t>0,
u(z,0) = e

Exercise 17.3. Consider the following initial boundary value prob-
lem for the advection equation,

ug +2u, =0, x>0,t>0,
U(:II,O) =0, x>0,
t
t) =——, t>0.

In this problem the value of u is known at points (zg,0) and (0, %)
along the positive parts of the x and t axes (Figure 17.3).
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u(x,0)=0

Figure 17.3. Beginning of an zt—diagram for Exercise 17.3.

(a) Find the equation for characteristics which start at (zo,0)
along the positive part of the z—axis. At any (z,t) in the
first quadrant with x > 2¢t, what is the value of u(x,t)?

(b) Find the equation for characteristics which start at (0,1o)
along the positive part of the t—axis. At any (z,t) in the
first quadrant with x < 2t, what is the value of u(zx,t)?

(c) Sketch the profile of the solution u(z,t) at times ¢t =0, 1, 2, 3.

17.2. Nonhomogeneous advection equation

The use of characteristics for constructing solutions of the nonhomo-
geneous advection equation

(17.4) U+ cuy = f

is similar to the method for the homogeneous equation u; + cu, = 0.
As before, the rate of change of u along a curve (x(t),t) is

%u(x(t), t) = ue(z(t),t) + C;—fuz(x(t),t),

and the characteristic curve starting at (z¢, 0), found by solving
dx
dt
is x = ct + x¢. The rate of change of u along a characteristic for the
nonhomogeneous equation (17.4) is then given by

B u(a(0),1) = w2(0),) + cun o0, 0) = F(t), 1)

=¢, xz(0) = xo,
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The value of u along the characteristic is not constant, but rather is
found by solving the initial value problem

L= 1, U0 = uolao)

where U(t) = u(z(t),t) is the value of u along the curve z = ct + zo.
Example 17.4. Consider the initial value problem

us +4duy, =1, —oco<x<oo,t>0,
u(z,0) = arctan(z).
The characteristic curve starting at the point (zo, 0), found by solving

dz/dt =4, is = 4t + xo. The rate of change of u(x(t),t) along this
curve is

%u(x(t),t) = u(x(t),t) + du(x(t),t) = 1

since uy + 4u, = 1. Integrating with respect to t gives
u(z(t),t)=t+ A

for some constant of integration A. To find A, note that at ¢t = 0,

A = u(z(0),0) = u(zo,0) = arctan(zgp).

The value of u along the characteristic curve beginning at (x¢,0) is
then u(x(t),t) = t + arctan(zo). Now at a point (z,t), the charac-
teristic through (x,t) extends back to the point (zg,0) on the x—axis
where oy = x — 4t. The value of u at (x¢,0) then gives the value of u
at (z,t) by

u(z,t) =t + arctan(zg) = t + arctan(z — 4t).
Exercise 17.5. Use characteristics to find the solution of

U + 2u, = —u, —oo<x<oo,t>0,
1
1422

u(z,0) =
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17.3. General linear conservation laws

Characteristics can also be used to solve initial value problems for
linear conservation laws in the form
(17.5a) ug +c(z, t)u, =0, —oo <z <00, t>0,
(17.5b) u(z, 0) = ug(x).
The coefficient ¢(z,t) may not be constant; nevertheless the charac-
teristic starting at the point (zo,0) in the xt—plane is still found by
solving

dx
(17.6) e c(z,t), z(0) = xo.
Since the characteristic speed c(x,t) is not necessarily constant, the
characteristics are not necessarily lines. The value of u(x(t),t), how-
ever, is still constant along these curves since

d—tu(x(t), t) = uw(x(t),t) + c(z, t)ug(x(t),t) =0

by (17.5a) and (17.6). As with the advection equation, the value of
u at a point (z,t) can found by:

(1) Finding the characteristic curves by solving dz/dt = c(z, 1),
z(0) = zo;

(2) Finding the particular initial point (zg,0) for the character-
istic passing through (z,t);

(3) Using xo to compute u(z,t) = u(zg, 0) = uo(zo)-
Exercise 17.6. Consider the following initial value problem:

us +txuy, =0, —oo<x<oo,t>0,

1

1422

(a) Solve (17.6) with c(x,t) = xt to show that the equation of
the characteristic curve starting at (zo,0) is = = xoetQ/ 2,
Plot several characteristics in the xzt—plane for 0 < t < 2
by picking at least 10 different starting points (zg,0) with
-5 <29 < 5.

(b) Find the solution u(z,t) of the initial value problem and an-
imate the result.

u(z,0)
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17.4. Nonlinear conservation laws

Returning to the general initial value problem (17.1), suppose now
that a constitutive equation relating u and ¢ implies that ¢ is a func-
tion of u, @ = ¢(u). By the chain rule, the general conservation law
ut + ¢, = 0 becomes uy + ¢ (u)u, = 0, or by letting c(u) = ¢’ (u),

us + c(u)uy = 0.
Unless c(u) is constant, this is a nonlinear equation for u.

In this section we will use the method of characteristics to solve
initial value problems of the form

us +c(w)uy, =0, —oo <z <oo,t>0,
u(z,0) = up(x).

The characteristic starting at (zg,0) for this problem is found by
solving

(17.7) %:E = c(u(z,t)), z(0)= xo.
At this stage, however, we do not know the function u(z,t) needed
to complete this ordinary differential equation. Whatever the charac-
teristic ends up being, the value of u(z,t) is still constant along the
resulting curve (z(t),t) since
d
i

(&(0),8) = wala(t), 1) + G uala(),0)

= us(z(t), t) + cu(z(t), t))u.(z(t),t) = 0.

As before, this shows that the value of u along a characteristic is
constant. The value of u at each point along the curve is then the
same as the value of u at the starting point (xo,0) of the curve, which
by the initial condition is

u(z, t) = u(zo, 0) = uo (o).

Now that it is known wu is constant along a characteristic, we can
return to (17.7) to solve for z(¢). Since u(z,t) has the constant value
uo(zp) along the characteristic starting at (xo,0), we can write the
initial value problem (17.7) as

dx

% = C(’U,()(:II())), :I)(O) = X9
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C(ul ) /C(uz ) /c(u3 )

u(xg, 0) =u; u(xo, 0) =u, u(xg, 0) =us

Slope

Figure 17.4. Characteristics of a nonlinear conservation law
ut + c(u)uz = 0 may not be parallel.

and solve it to find that
(17.8) | = cuo(xo))t + 0. |

Like the advection equation, the characteristics are lines. Unlike the
advection equation, however, the characteristics are not necessarily
parallel since the slope 1/c(ug(zo)) of each line depends on the value
of u at the initial point of the curve (see Figure 17.4). The procedure
for finding the value of u at a point (z,t) is now:

(1) Construct the characteristics z = c(uo(zo))t + zo using the
speed c(u) from u; + c(u)u, = 0 and initial profile ug(zo).

(2) Find the initial point (zg,0) of the characteristic passing
through (z,t) by solving x = c(ug(zo))t + o for zy. This
step often has to be done numerically.

(3) Use z to calculate u(x,t) = u(xo, 0) = up(zo)-
Example 17.7. If ¢ = —u2 then the conservation law u; + ¢, = 0

takes the form of the 1nv1501d Burgers equation u; + uu, = 0 with
characteristic speed c¢(u) = u. Now consider the initial value problem

U +uuy, =0, —oco<z<oo,t>0,

0 if x <0,
u(@,0) = {e‘l/’” if x> 0.

Since c(up(zo)) = uo(xo), the characteristic starting at (xo,0) is the
line £ = wup(xo)t + zo. The characteristic lines for this initial value
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problem are then
r=0-t+xo if zg <0,
T = (e‘l/“)t+x0 if zg > 0.

Note that as the starting point (zg, 0) moves further to the right along
the x—axis, the characteristic slope 1/c = e!/%° decreases to zero:

t

u(xy,0)=0 u(xg , 0) = exp(—1/xp)

At a point (z,t), the value of u is found from u(z,t) = u(xo,0),
where (z¢, 0) is the starting point of the characteristic passing through
(z,t). When z < 0, the characteristic passing through (z, t) is vertical
and starts at the point (z,0). In this case, the initial condition gives
u(z,t) = u(x,0) = 0 since z < 0.

When z > 0, the characteristic line passing through (z, ) has its
starting point (xo,0) on the positive z—axis; the actual value of xq is
found by solving = = (e~1/%0)t + o for x¢, although this cannot be
done explicitly. Whatever the value of xy happens to be, the value of
u at (z,t) is computed by u(z,t) = u(zg,0) = e~ /0. The solution
u(z,t) is then piecewise defined by

.0 0 ifx <0,
u(x,t) =
e/ if 2 > 0, where o + (e71/*0)t = z.

Exercise 17.8. In the last example, find the starting point (zg,0)
of the characteristic which passes through the point (z,t) = (1,2).
Then calculate the value of the solution u at (1,2).



Chapter 18

Gradient Catastrophes
and Breaking Times

In the previous chapter, it was shown that the solution of a conser-
vation law u; + ¢, = 0 could be constructed at the point (x,t) by
following a characteristic curve from (z,t) back to a point (zg,0).
An implicit assumption in this method is that there is exactly one
characteristic extending from the x—axis to (x,t) in the zt—plane. In
nonlinear conservation laws, however, it is possible for two (or more)
characteristics to intersect at (z,1t):

! \
K)

Such an occurrence can cause the solution u(z,t) to break down with
an event called a gradient catastrophe. In this chapter we will describe
the cause of gradient catastrophes and predict the time at which they
occur. As will be discussed in the next chapter, gradient catastrophes
are a precursor to shock waves.
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Characteristic

Figure 18.1. Constant value of u(z,t) along a characteristic.

18.1. Gradient catastrophe

In Section 17.4 it was shown that the characteristic curves of the
initial value problem

ur + c(u)uy, =0, —oo <z <o0,t>0,
(18.1)
u(zx,0) = ug(x)

are lines z = c(ug(zo))t + zo along which the value of u is constant.
When viewed in the ztu—diagram shown in Figure 18.1, each char-
acteristic is a line in the xt—plane, and the height of the surface
represented by u(z,t) is constant along that line.

In the special case where c(u) is constant (the advection equa-
tion), the characteristic lines x = ct + xo are parallel. By follow-
ing these characteristics, we see that an initial profile u(z,0) in the
zu—plane has the appearance of being translated along the charac-
teristics as t increases, forming a traveling wave (Figure 18.2).

When c(u) is not constant, however, the characteristic lines =
c(up (o))t + o are not necessarily parallel and may cross. The value
of u nevertheless remains constant along each individual characteristic
line. As shown in Figure 18.3, if two characteristic lines intersect and
the value of u is different along each line, then the slope u,(z,t) in the
x—direction becomes infinite as t approaches the time corresponding
to the intersection of the lines. The formation of an infinite slope u,
in the solution u is called a gradient catastrophe.
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X

Figure 18.2. Parallel characteristics translate the initial pro-
file in time.

Figure 18.3. Crossing characteristics can result in infinite
slope ug.

The gradient catastrophe can also be seen in the animation of
u(z,t). When viewing Figure 18.1 facing the zu—plane, the point
(z(t),t,u(z(t), t)) on the surface u = u(z,t) above the characteristic
curve is projected onto the zu—plane as the point (x(t),u(x(t),t)). As
t increases, this point appears to move in the xu—plane at a constant
height u, since (z(t),t) is following along a characteristic curve. The
velocity at which this point moves in the x direction is dx/dt, which by
construction of the characteristic curve (17.7) is dz/dt = c(u(z,t)).
Thus the function c(u) represents the velocity at which a point at
height v in the zu—plane animation moves horizontally (Figure 18.4).

Now suppose that c(u) is an increasing function of u, such as
c¢(u) = u. In this case, larger values of u > 0 give larger speeds c,
and so the upper part of the profile of u(z,t) (larger values of u) will
appear to move to the right faster than the lower part (smaller values
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Figure 18.4. Horizontal velocity of a point on the profile of
u(z, t) is c(u).
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Figure 18.5. Top part of the profile of u(z,t) moves with
greater speed than the lower part when u; + uuz = 0.
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Figure 18.6. Top part of the profile of u(z,t) can catch up
to the lower part, forming a gradient catastrophe.

of u). As shown in Figure 18.5, if the profile of u(x,t) at one time is
an increasing function of x, then at later times ¢ the profile of u(z,t)
will appear to have “thinned out” or rarefied.

On the other hand, if a profile of u(z,t) looks more like a pulse,
then the top part of the profile of u(z,t) catches up with the slower
moving lower part of the profile (Figure 18.6). This forms an infinite
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slope u,, creating a gradient catastrophe. If time were to continue
beyond this point, the top part of the profile would appear to overtake
the lower part and u(z,t) would fail to be a function.

18.2. Breaking time

The earliest time t, > 0 at which a gradient catastrophe occurs in a
solution of a conservation law is called the breaking time.

Example 18.1. Consider the following initial value problem for the
inviscid Burgers equation:

us +uuy, =0, —oco<zx<oo,t>0,
u(z,0) = e

With the speed c(u) = u and initial profile ugp(z) = e~=", the charac-
teristic starting at (zo,0) is
z = c(up(zo))t + o = et + z0.

A diagram of characteristics with different starting points (zo,0) is
displayed in Figure 18.7 and shows that there are characteristics which
intersect. From the figure, the earliest time at which characteristics
cross appears to be at a breaking time of approximately £, = 1.2.

’b

Figure 18.7. Characteristics z = e~ ot + zg of Example 18.1.
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Exercise 18.2. The companion MATLAB software (see page xiii)
includes the script wvburg for quickly plotting characteristics of the
Burgers equation u; + uu, = 0. In MATLAB, type wvburg at the
prompt and set the initial profile field u(z,0) to exp(-x~2) in order
to replicate the characteristics shown in Figure 18.7. By zooming in at
the point where characteristics are crossing, verify that the breaking
time is about t;, = 1.2. What is the breaking time for the solution of
the Burgers equation whose initial profile is u(z,0) = sin(x)?

For the remainder of this section, we will discuss how the breaking
time t, can be computed by calculating u,(z,t) and finding the first
time ¢, at which u, becomes infinite.

By the method of characteristics, the value of the solution u of
us +c(u)uy =0, —oo <z <00, t>0,
u(z,0) = ug(x)
at the point (x,t) is u(x,t) = uo(zo), where o = zo(z, t) determines

the starting point (zo,0) of the characteristic passing through (z,t).
The derivative u, is then

.
(18.2) ug(z, t) = uo(xo)%

by the chain rule.

The value of zg which determines the starting point (xg, 0) of the
characteristic through (z, t) is defined implicitly by the equation

z = c(uo(zo))t + zo.

The derivative of z¢ with respect to = can be found from this equation
by implicit differentiation. Taking the partial derivative of both sides
with respect to x gives

2 o= 2 [efuolao))t + o),

1=t [efuo(an))]

Zo

BIEO (9.’130
Bz o
Solving for dzo/0x then shows that

8.’E0 1

dr 1+t -c(uo(x0))
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Substituting this into (18.2) expresses the derivative of u(z,t) with
respect to = as

ug(xo)
(18.3) uz(z,t) = o .
‘ 1+t ddToc(uo(xo))
The problem of determining when u, becomes infinite is now re-
duced to a problem of determining when the denominator of (18.3)
approaches zero.

If adz—oc(uo(xo)) > 0 for all initial points (xg,0), then the de-
nominator in (18.3) never approaches 0 as t increases from zero. In
this case, no gradient catastrophe occurs. On the other hand, if
d—%c(uo(a:o)) is negative for some x, then a gradient catastrophe can
occur since the denominator in (18.3) will approach 0 as ¢t approaches
-1/ ddTOC(UO(-TO))- The value of xy which produces the earliest blowup
time t is the value of x¢ which makes dizgc(uo(xo)) the most negative.
Using this value of z, the breaking time is then

-1

Example 18.3. Returning to the initial value problem in Exam-
ple 18.1, the expression (18.4) will be used to compute the breaking
time ¢, in Figure 18.7. With the speed c(u) = u and initial pro-
file ug(x) = e~*" from that example, the speed of the characteristic
starting at (zo,0) is

c(up(xo)) = c(e_xg) = e %,

The breaking time ¢, in (18.4) requires finding the most negative value
of

d d
F(zo) = EC(UO(%)) = (—m—oe—z% = —2moe_‘”3.

The derivative F'(zo) = (—2+4£E(2))6_T'g shows that F'(zo) has critical
points at xp = +1/4/2, with g = 1/4/2 yielding the most negative
value of F(x¢). The breaking time (18.4) with 29 = 1/1/2 is then

4 — -1 _ 1 _ e
b —2z0e~%  \2e~1/2 |2
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The value of t, = 1/e/2 is approximately 1.16 and is shown earlier in
Figure 18.7.

Exercise 18.4. Consider the initial value problem

us + utu, =0, —o0o <z < oo, t>0,
1

1+z?

(a) Find the equations of the characteristics for this problem.
Using a computer or graphing calculator, graph several char-
acteristics on the same screen (such as Figure 18.7) to identify
where a gradient catastrophe might occur. Based on the di-
agram, estimate a value of the breaking time t;.

u(z,0) =

(b) Calculate the breaking time ¢, by using (18.4) to determine
the first time that u, becomes infinite.



Chapter 19

Shock Waves

The derivation of the differential equation form of a conservation law
u; + ¢, = 0 assumes that the solution u has continuous first deriva-
tives. The method of characteristics can construct such a solution,
but only up until the time of a gradient catastrophe. In this chap-
ter the solution wu(z,t) will be extended beyond the breaking time
by permitting u(z,t) to be a piecewise smooth function. In doing so,
we will have to return to the original integral form of the conserva-
tion law at points (z,t) where u(z,t) is discontinuous. The resulting
discontinuous solution of the conservation law is called a shock wave.

19.1. Piecewise smooth solutions of a
conservation law

As we have seen, characteristic curves for the initial value problem
us + c(u)uy, =0, —oo<z<oo,t>0,
u(z,0) = uo(z)
can be used to construct a solution u(z,t) starting at time ¢t = 0,
but ending at the breaking time t; of a gradient catastrophe. In the
following section we will modify the method of characteristics to allow

the profile u(z, t) to literally break at time ¢ = t3, forming a function
which is only piecewise smooth for time t > t, (Figure 19.1).

To describe piecewise smooth functions, suppose (zs(t),t) is a
curve in the zt—plane which divides the upper half of the plane into
two parts (Figure 19.2). Let R~ represent the region to the left of the
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Nl L

Figure 19.1. Profiles of a function u(z,t) which “breaks”
after a gradient catastrophe.

* 0.0

(x,(0),0) x
Figure 19.2

curve and R™ the region to the right of the curve. A function u(z,t)
is called a piecewise smooth solution of

U+ ¢, =0, —oco<zxr<oo,t>0,
u(z,0) = uo(z)

with jump discontinuity along z; if u(z,t) has the following prop-
erties:

(1) u(x,t) has continuous first derivatives u; and u, in R* and
R, and satisfies the initial value problem in region R~

U+ ¢ =0 for (z,t)in R™,
u(z,0) = uo(x) for z < z4(0),
and in region R™
us + ¢, =0 for (x,t) in RT,
u(z,0) = up(z) for z > x4(0).

(2) At each point (zg,to) on the curve (z,(t),t), the limit of
u(z,t) as (x,t) — (zo,to) in R~ and the limit of u(z,t) as
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Figure 19.3. The graph of a piecewise smooth function u(z,t).

(o) x ) x ) *

Figure 19.4. Profiles of a piecewise smooth function u(z,t)
with discontinuity at z(t).

(z,t) — (zo,to) in RT both exist but are not necessarily
equal.

The graph of such a function appears as two sections of surface with
a jump along the curve (z,(t),t) in the at—plane (Figure 19.3). The
animation of a piecewise smooth function, formed by taking slices of
the surface at a sequence of increasing times, has a profile with a
moving jump discontinuity located at z(t) (Figure 19.4).

19.2. Shock wave solutions of a conservation law

The construction of a solution of u; + ¢, = 0 by the method of
characteristics temporarily stops when a gradient catastrophe occurs.
The physical process that the conservation law models, however, does
not necessarily end. In this section we will describe how to extend
the solution u(z,t) beyond the breaking time by permitting u(z,t) to
be only piecewise smooth, but in a way which continues to obey the
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(xs(),0)

Figure 19.5. Using a curve to divide a region of crossing characteristics.

underlying conservation principle. The formation of a discontinuity
after a gradient catastrophe is a dramatic change in the nature of
u(z,t). Such a function will be called a shock wave solution of the
conservation law.

Suppose that characteristics of

u+ ¢, =0, —oco<x<oo,t>0,
(19.1)
U(ilZ,O) = UO('T)

begin intersecting at time #;, which we will assume is t, = 0 as shown
in Figure 19.5. In order to proceed with the method of characteristics,
a curve (z5(¢),t) is drawn through the region of crossing character-
istics to separate the characteristics approaching from the left and
right (Figure 19.5). While many curves can be drawn to separate
the crossing characteristics, it will now be shown that the underlying
conservation law selects out one choice of z4(t).

Suppose u(z,t) is a piecewise smooth solution of the initial value
problem (19.1) with jump discontinuity along zs(t). While u(z,t)
satisfies us + ¢, = 0 at each point (z,t) in R~ and R™, the derivatives
of u(x,t) do not necessarily exist at points (x,t) on the curve. To see
what happens at points (zs(t),t) on the curve, we have to return to
the original integral form of the conservation law (15.5). With no
source term, the integral form of the conservation law is

b
(19.2) % / u(z,t)dr = ¢(a,t) — ¢(b,1).
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(x50, 1)

bl

a b x

Figure 19.6

Fixing a point (zs(t),t) on the curve, pick a and b so that a < z4(t) <
b as shown in Figure 19.6. The integral in the conservation law (19.2)
can then be split into two parts as

b zs(t)” b
/ u(:v,t)d:v=/ u(:c,t)d:v+/ u(z, t)dz.

S(B)7F
Substituting into the conservation law (19.2) and using the chain rule
to compute the derivative of these integrals with respect to ¢ results
in

zs(t)”
/ we(x, t)dz + u(zy t)%

b
[ e — (el 0 G = dlet) = 60.0)

o(8)F
Letting a — = and b — z7 reduces this to the equation

(et 0% = (a; 1) - glat 1),

from which we can solve for dz,/dt to obtain the ordinary differential
equation

dzxs _ (f)(l‘:,t) — (ﬁ(ﬁl)s_,t)
(19.3) dt ou(zit) —u(zs,t)

This derivation shows that in order for a piecewise smooth so-
lution of the initial value problem (19.1) to satisfy the integral form
of the conservation law (19.2), the curve along which u(z,t) has a
jump discontinuity must be picked to satisfy (19.3). The differential
equation (19.3) is called the Rankine-Hugoniot jump condition
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(x(0).)

X

Figure 19.7. Characteristic diagram and a curve separating
crossing characteristics for Example 19.1.

u(xp,0) =1 u(xp,0) =0 X

for u(z,t). The expressions ¢(z},t) — ¢(z; ,t) and u(z?,t) —u(z; ,t)
calculate the jump in the values of ¢ and u as (z,t) crosses the curve
(zs(t),t) from left to right. Using the jump notation

[z, 1) = (z™, 1) — ¢z, 1), [u](z,t) = u(z™,t) —u(z™,1),
the Rankine-Hugoniot jump condition is written as

dz _ [¢]
dt [y’

A piecewise smooth solution u(z,t) of us + ¢, = 0 with a jump
along a curve z4(t) satisfying the Rankine-Hugoniot condition is called
a shock wave solution of the conservation law. The curve z,(t) is
called a shock path.

Example 19.1. Consider the following initial value problem for the
inviscid Burgers equation:

ur +uu, =0, —oco<xr<oo,t>0,

(©.0) 1 ifz<o0,
u(x,0) =
0 ifz>0.

The characteristics z = c(ug(xo))t+xo of this problem are x = 0-t+xg
when z¢ > 0, and £ = 1-t+x¢ when ¢ < 0. Based on the diagram of
characteristics (Figure 19.7), it appears that the characteristics begin
crossing at (0,0) with a breaking time of ¢, = 0. For this reason we
will look for a shock wave solution with shock path starting at (0,0).
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Once (zs(t),t) is found to separate the crossing characteristics,
the method of characteristics can be used in the regions R~ to the left
and R' to the right of the path (Figure 19.7). If (x,t) is a point in
R~ then there is one characteristic line extending back from (z,t) to
a point (zg,0) on the negative x—axis. Since u is constant along this
line and the value of u(xo,0) = 1 for zo < 0, the value of u at (z,t)
is u(z,t) = u(xo,0) = 1. Similarly, if (z,t) is a point in R, then the
characteristic through it extends back to a point (zg, 0) on the positive
x—axis where u(xo,0) = 0. In this case, u(z,t) = u(xo,0) = 0. Once
the shock path is found to separate the regions R~ and R™, the
solution u will be given by

(1) 1 if (z,t) e R,
u(z,t) =
0 if (z,t) € RT.

The curve (z4(t),t) separating the two regions will be found using
the Rankine-Hugoniot jump condition; starting the shock path at
(0,0) forms the initial value problem

dz,  [¢]

The flux ¢ for the Burgers equation u; + uu, = 0 is ¢ = Fu?, so
dr, [3u?] _ T(uh)? = J(u)? _ut 4u
&~ W - wi—w 2

Since u =11in R~ and u = 0 in R™, the value of u as (z,t) approaches
the curve from the left is u~ = 1, while the value from the right is
ut = 0. The jump condition then simplifies to dzr,/dt = 1/2, which
together with the initial condition z;(0) = 0 implies the shock path
is the line s = t/2. An xt—diagram showing the shock path z = ¢/2
and characteristics (Figure 19.8) illustrates the resulting shock wave
solution,

1 ifx< it
u(x,t) = 27
(1) {0 ifx>%t.

Four frames of animation of this function are shown in Figure 19.9.
Note in particular the jump discontinuity moving to the right with
speed 1/2.
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P
N =

\Y
N

/

Figure 19.8. Shock path for Example 19.1.

t=0 t=1 t=2 t=3

0.5 0.5 0.5 0.5

-2 0 2 -2 0 2 -2 0 2 =2 0 2

Figure 19.9. Animation of the shock wave solution of Example 19.1.

Exercise 19.2. Find a shock wave solution for the following initial
value problem, and then animate the result:

u+ulu, =0, —oco<z<oo,t>0,
2 ifzx <0,

u=0) = 1 ifz>0



Chapter 20

Shock Wave Example:
Traffic at a Red Light

Shock wave solutions for conservation laws are piecewise smooth solu-
tions which satisfy the Rankine-Hugoniot jump condition along curves
of discontinuity. The resulting moving discontinuity models an abrupt
change propagating through a medium. In this chapter a shock wave
will be constructed to model traffic backing up at a red light.

20.1. An initial value problem

Suppose that car traffic, moving uniformly along a single lane road,
encounters the end of a line of traffic which has stopped at a traffic
light (Figure 20.1). The cars which have already stopped are lined up
with maximum density u; cars per mile, while the cars approaching
the end of the line have a uniform density ug cars per mile. Since
is the maximum possible traffic density, the value of uy will satisfy
0< ug < Uj.

Incoming Traffic Stopped Traffic

X— K= K> K> KKKKXKXKXK

uy cars/mile u, cars/mile

Figure 20.1. Incoming cars encountering stopped traffic.
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Returning to Section 16.3, let u(z,t) represent the density (cars
per mile) of traffic at position x along the road at time ¢. The flux
¢(z,t) represents the rate (cars per hour) at which traffic passes by
position x and time t. Letting v; denote maximum traffic velocity,
the linear model for traffic velocity v = v1(1 — u/uq) results in the
constitutive equation (see Section 16.3)

(20.1) ¢ =uv = v (u—u?/u).

Assuming that the road has no entrances or exits, the basic conser-
vation law u; + ¢, = f with flux ¢ and source f = 0 becomes

ug +v1(1 — 2u/ug)u, = 0.
Let x = 0 represent the location of the end of the stopped traffic
at time ¢t = 0. For now, it will be assumed that the stopped traffic

extends indefinitely in one direction and the incoming traffic extends
indefinitely in the other. In this case, the initial value problem

ug +v1(1 — 2u/uy)u, =0, —oo <z <oo,t>0,

(20.2) ug if x <0,
u(m, 0) =
U if x Z 0,

models the profile of traffic density u(z,t) at later times ¢.

20.2. Shock wave solution

In this section we will use the method of characteristics to find a
solution of the initial value problem (20.2). Since the conservation
law in (20.2) is of the form u; + c(u)u; = 0, a solution w of (20.2) will
be constant along the characteristic lines

T = C('U,(:Ilo, 0))t + o,

where u(zo,0) is determined by the initial condition in (20.2), and
c(u) is given by

c(u) = v1(1 = 2u/uy).
If ¢ > 0, then the characteristic starting at (zq,0) is

z = c(ur)t + ¢ = —v1t + xo.
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N

0<uo<lul lul<uo<ul
2 2

Figure 20.2. Breaking time for the solution of the initial
value problem (20.2) is t, = 0.

In an xt—diagram, this shows that characteristics starting at points
(x9,0) on the positive z—axis are parallel lines with negative slope
-1 / V1.

On the other hand, if g < 0, then the characteristic starting at
(.’IJ(), 0) is

z = c(ug)t + xo = v1(1 — 2ug/u1 )t + xo.

Note that this line can have positive or negative slope 1/c depending
on whether ¢ = v1(1 — 2up/uq) is positive or negative, i.e., if ug is
smaller or larger than u, /2 (see Figure 20.2). In either case, however,
the slope 1/c will be between —1/v; and 1/v; since the incoming
traffic density ug satisfies 0 < up < ug.

As shown in Figure 20.2, the characteristics will begin crossing at
the origin. For this problem we will need to look for a shock wave so-
lution whose shock path z4(t) starts at z,(0) = 0 and extends upward
to divide the region in which characteristics intersect (Figure 20.3).

At a point (x,t) to the left of the shock path, the characteristic
passing through the point extends back to the negative x—axis where
u(xg,0) = ug. Since u is constant along characteristics, u(x,t) = ug.
Similarly, a point (z,t) to the right of the shock path lies on a char-
acteristic which extends back to the positive z—axis where u(z¢,0) =
uq, 80 u(z,t) = uy. The traffic density function u(x,t) will then have
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J

u(x0,0) = ug u(xp,0) = u; x

Figure 20.3. Setting up an xt—diagram for the initial value
problem (20.2).

the form

(2.1) up if x < x4(t),
u(z,t) =
up  if @ > z4(t).

The Rankine-Hugoniot jump condition dz,/dt = [¢]/|u] will de-
termine the shock path with the flux ¢ given by (20.1). At a point
(z,t) on the shock path, we already determined that the values of u

from the right and left are u™ = u; and v~ = ug. The jump condition
doe 9] _ o(ut) —9(u7) _ plur) - dlup)
dt [u] ut —u~ U — Ug
then simplifies to
drs 0 —v1(up — ud/uy) ug
— = = —U;—.
dt U — Ug 31

Integrating this differential equation with respect to ¢t and using the
starting point z,(0) = 0 gives the only allowed shock path, the line

Ug
s = —v;—t.
Ul

The resulting shock wave solution to (20.2) is then

(20.3)

(z.1) ug if x < —vy(ug/us)t,
u(z,t) =
up if x > —v(uo/uy)t,

with an zt—diagram shown in Figure 20.4. Note that this shock path
indicates that the end of the line of stopped traffic will back up at
the rate of vy (up/u1) miles per hour.
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Cuety=ug s\ N .h(x.,t).'.—_,{].’.

Figure 20.4. The shock path x5 = —vi(uo/u1)t.

t=0 t=0.01 t=0.02 t=0.03
300 300 300 300
" 200 200 200 200 '
100 100 100 100
0 0 0 0
-1 0 1 -1 0 1 -1 0 1 -1 0 1
X X

Figure 20.5. Traffic backing up at a rate of 15 miles per hour.

Example 20.1. As a particular example, suppose that the stopped
traffic is at a maximum density u; = 300 cars per mile, and the
maximum velocity along this stretch of road is v; = 45 miles per
hour. If the incoming traffic is traveling at 30 miles per hour, then
the velocity model v = vy (1 —u/u;) predicts that the incoming traffic
density ug satisfies 30 = 45(1 — uo/300), so ug = 100 cars per mile.
With these values, the solution (20.3) becomes

u(z,t) =

100 if z < —15¢,
300 if z > —15t.

The resulting shock path, representing the location of the end of the
line of stopped traffic, is given by £ = —v; (uo/u1)t = —15¢, indicating
that the end of the stopped traffic is backing up at 15 miles per hour.
Four frames of animation of this traffic flow are shown in Figure 20.5.
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Exercise 20.2. Suppose that the incoming traffic in Example 20.1
is traveling at 15 miles per hour.

(a) Consider the speed at which the end of the line of stopped
traffic propagates backwards through the incoming traffic.
Without computing the shock path, would you say that this
speed should be larger or smaller than the rate 15 miles per
hour in Example 20.17

(b) Find the shock path and resulting shock wave solution of the
initial value problem (20.2). Then represent the solution u
with an xt—diagram. How is the speed of the shock path here
different from the one in Example 20.17

Exercise 20.3. Suppose car velocity is modeled by v = vy (1—u?/u}).

(a) Sketch the graph of v as a function of the traffic density u.
In what ways is this model of car velocities more (or less)
realistic than the linear model v = v (1 — u/up)?

(b) Find a shock wave solution of
U+ ¢, =0, —oco<zr<oo,t>0,
if 0
u(z,0) = uy 1Ux<O,
up ifx >0,

with the flux modeled by ¢ = uv = v;(u — u®/u?). Sketch
the resulting xt—diagram of the solution.



Chapter 21

Shock Waves and the
Viscosity Method

Another approach for locating shock waves is through the use of wvis-
cosity solutions. By making a modification to the model of traffic
stopping at a red light, we will construct viscosity solutions which re-
semble the shock wave found in the previous chapter. As the amount
of viscosity is decreased, the viscosity solution approaches the shock
wave solution.

21.1. Another model of traffic flow

The traffic flow in the previous chapter was described by a conser-
vation law u; + ¢, = 0 and flux ¢ = wwv, where v = v1(1 — u/uy)
modeled the traffic velocity v that occurs when traffic is at a density
u. Changes to this model can be made to take into account other
factors which may influence traffic velocity. Here we will modify the
model to incorporate a driver’s ability to look ahead and sense up-
coming changes in traffic density.

As shown in Figure 21.1, if traffic is moving in the positive x
direction, then the sign of u,(x,t) at time t indicates whether the
traffic ahead of position x is more dense (u, > 0) or less dense (u, <
0) than the traffic at position z. Suppose that drivers will adjust
their speed downward if they see an increase in traffic density ahead

159
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Traffic more Traffic less

dense ahead /\dense ahead
J

e —

u(x,t) >0 u(x,t) <0

Figure 21.1

of them, and adjust their speed upward if they see a decrease in traffic
density. One model, which uses the derivative u, to account for this
adjustment of traffic velocity, is

v=v1(1—-u/ur) — rug/u.

This equation starts with the basic linear model of traffic velocity
given by v = v1(1 — u/u1), and then makes an adjustment to the
velocity by an amount —ru,/u. The fraction u,/u is a measure of
the relative change in the traffic density, and the constant r is a
positive number which indicates how sensitive drivers are to changes
in traffic density.

With this model of traffic velocity, the flux becomes
¢ =uv = vy (u—u?/ur) — rug,

and so the resulting conservation law u; + ¢, = 0 is now the second
order equation

(21.1) ’ut+v1(1—2u/u1)uz zruu.i

When r = 0, this equation reduces to the traffic flow model used in
the previous chapter.

In the spirit of uniform traffic reaching the end of a line of stopped
traffic, we will assume that far ahead on the road the traffic density is
nearly constant and at its maximum density. This will be represented
in terms of limits by
(21.2a) lim u(z,0) =u;, lim ugy(z,0)=0.

T— 00 Tr— 00
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Much further back on the road, the incoming traffic density is assumed
to be nearly constant at ug cars per mile, expressed in terms of limits
as

(21.2b) lim u(z,0) =wup, lim wug.(z,0)=0.

T— —00 T——00

Exercise 21.1. Let U = v1(1 — 2u/u;). Show that this substitution
in (21.1) results in the viscous Burgers equation Uy + UU, = rUygs.

21.2. Traveling wave solutions of the new model

In this section we will find traveling wave solutions of the modified
traffic flow model

up + v (1 — 2u/ug)ug = Tugy.

Making the substitution u(z,t) = f(x — ct) in this model produces
the ordinary differential equation

2
—cf’+v1f’ _ ﬂff/ — Tf//~
U1
Integrating once then results in
v
(21.3) —cf+v1f—&if2:rf’+k
1

for some constant of integration k.

At this point the constant k and speed c can be found by using
the limit assumptions in (21.2). Since u(z,0) = f(z), the limiting
conditions (21.2) show that f should satisfy

lim f(z)=ula lll'_l'l f(Z):'U,O,
lim f'(z) =0, lim f'(2) = 0.

Taking z — oo anid z — —o0 in the differential equation (21.3) results
in the two equations

—cu; +viu; —viug =1-0+k,

2
V11U

—CUug + V1ug — 02T-0+k.
U1

Solving these two algebraic equations for k and c gives the values
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(214) CcC=— s k= V1UuQ.

With these values of ¢ and k, the differential equation in (21.3)
then becomes
Uugv v
——=f+uf— = =rf +viu,
(5% (751
which after rearranging can be written as
TU1

(f —uwo)(f —wm) = f

T
Separating variables by writing

f v

(f—w)(f—wm)  ru
and integrating both sides with respect to z (using partial fractions
on the left side) gives the general solution
1 _
In f-w
ur—uo | f—uo
Since u(z,t) = f(x — ct) represents the traffic density as cars with
density ug approach a line of traffic of maximum density u;, we will
assume that the value of f(x — ct) is between ug and wu;, that is,
ug < f(z) < up. In this case

1 lnI:ul_f] :_v_lz_',.kl.
ur—uo | f—uo

Taking k1 = 0 and solving for f(z) gives the traveling wave profile

=Ltk
TU1

_ (wi—ug)u1 z]

u] + Ug exXp [ —

f(z) - (u1—ug)v
1+ exp [—1701,2}

TU

Adding and subtracting the term wu; exp| - ] in the numerator and
splitting the result into two fractions shows that f(z) can also be
written in the form

up — U1

1+ exp [——”l(ul_“o) z] .

f(z) =u +

TU1
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Figure 21.2. A profile of the traveling wave solution (21.5)
of the modified traffic flow equation (21.1).

The traveling wave solution u(z,t) = f(x — ct) with ¢ given by (21.4)
is then

(21.5) u(z,t) = up + U .
1+ exp [—”1(%:“0) (z+ 42 t)]

A profile of this wave is shown in Figure 21.2.

21.3. Viscosity

The term ru,, added to form the traffic flow equation
ur +v1(1 — 2u/uy)uy = TUg,

is called a viscosity term with viscosity parameter r. The result-
ing solution (21.5) is called a viscosity solution. This solution is
similar to the shock wave solution (20.3) found in Section 20.2: both
are traveling waves moving against the flow of incoming traffic with
speed ¢ = viug/u;. Their profile shapes are similar, too, except that
the viscosity solution does not have a discontinuity (Figure 21.2).
The effect of adding the viscosity term to form the modified equation
Ut + c(u)ug = rugs is to “smooth out” the discontinuous shock wave
solution of u; + c(u)u, = 0.
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As 7 decreases to 0, the viscosity solution u(z,t) given by (21.5)
approaches the traveling shock wave. If £ + (viug/u1)t > 0, then

Ug — U1

rgrg+ u(z,t) = rE%ﬁ u + 1+ o [vl(ul—uo) (z + 2 t)]
Tu Uy
= Ui,
since the exponential grows to infinity. On the other hand, if = +
(viug/u1)t < 0, then the exponential decays to zero and

Up — U1

lim+ u(z,t) = lim |u +

o o 1+ exp | ltol (g 4 o )|

:u1+(u0—u1)=u0.

Thus as the viscosity parameter r decreases to zero, the viscosity
solution approaches the shock wave solution (20.3) given by

{UO ifr< —vl(uo/ul)t,

lim wu(z,t) =
u; ifx> —vl(uo/ul)t.

r—0+
This approach to finding the shock solution is called the wviscosity
method for constructing shock waves.

Exercise 21.2. Suppose the maximum velocity v; is 60 miles per
hour, the maximum density u; is 350 cars per mile, and the incoming
traffic density ug is 100 cars per mile. Animate the viscosity solution
(21.5) with r =100, 10, 1, 0.1, and 0.01.



Chapter 22

Rarefaction Waves

Earlier we saw how intersecting characteristics led to the construction
of shock wave solutions of a conservation law. In this chapter we will
examine a problem at the other extreme: in nonlinear conservation
laws, it is possible to have regions in the xt—plane which contain
no characteristics. For these regions, the method of characteristics
will be modified to form rarefaction waves. Later in this chapter a
rarefaction wave will be constructed which models traffic flow after a
red light turns green.

22.1. An example of a rarefaction wave

The characteristics £ = c(u(xg, 0))t + z¢ for the initial value problem
u +uu, =0, —oco<zx<oo,t>0,
(22.1) u(z,0) = {0 if z <0,
1 ifz>0,

constructed using the characteristic speed c(u) = u are

r=0-t+z9 ifzo <O,

r=1-t+x9 ifzg>0.
When drawn in the zt—plane (Figure 22.1), note that the character-
istics do not enter the wedge-shaped region 0 < x < t < co. In this

section we will look at rarefaction waves as one way of constructing
a solution u(z,t) of the initial value problem (22.1) in this region.
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u(xp,0) =0 u(xp,0) = 1 x
Figure 22.1. Characteristics which do not enter part of the xzt—plane.

u(x,0) t

1l

| 7

u(x,0) . ,
| ! ‘
7 x

X

Figure 22.2. Smoothing the initial data u(xz,0) to create a
fan of characteristics, then letting Az — 0.

Suppose the initial profile u(z,0) is modified to make a smooth
transition from v = 0 to v = 1 within an interval of length Az
around x = 0. As shown in Figure 22.2, the resulting characteristics
then make a smooth transition from lines with speed ¢ = 0 (vertical)
to lines with speed ¢ = 1 (slope 1). Letting the interval of transition
Az shrink to 0 (Figure 22.2) suggests that we might be able to find
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a solution of u; + uu, = 0 in the region 0 < z < t by filling it
with a “fan of characteristics”. This fan consists of lines =z = ct,
originating from the origin, whose speeds vary from ¢ = 0 (vertical
line) to ¢ = 1. A function u(z,t) which is constant along each of
these inserted “characteristics” would be of the form u(z,t) = g(z/t),
a function of the speed (or slope) of the lines x = ct.

To search for a solution of u; + uu, = 0 of the form u(z,t) =
g(x/t), first note that by the chain rule, the derivatives u; and u, are

wr(z,t) = —%g’(m/t), us(z,t) = %g’(x/t).

Substituting these derivatives into u; +uu, = 0 produces the equation

— 2@/ + o) g/ =0,

from which it follows by factoring that

2o/ (sta/n) - T) =0,

This shows that either ¢’ = 0 (g is constant) or g(x/t) = z/t. The
following exercise shows that we can discard the first possibility.

Exercise 22.1. Consider the initial value problem given in (22.1).
Use the method of characteristics to show that w(z,t) = 0 in the
region z < 0 and u(z,t) = 1 in the region z > t. Now suppose that
u(z,t) = g(x/t) = A in the wedge-shaped region 0 < z < t, resulting
in the function

0 ifx<o0,
u(z,t) =¢ A if0<zx<t,
1 ift<uzx.

Use the Rankine-Hugoniot jump condition along the lines x = 0 and
x =t to show that u(z,t) cannot be a shock wave solution of (22.1).

The other possibility for g is g(z/t) = x/t. Figure 22.3 shows the
resulting xt—diagram that is formed by taking u(z,t) = g(z/t) = x/t
in the wedge-shaped region 0 < z < t, and using the method of
characteristics in the left (z < 0) and right (z > t) regions. The
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x
: P I
u(x,t)=0 Culx,t)=1

u(x,t)=

u(x,0) =0 u(x,0) =1 x

Figure 22.3. An zt—diagram using u(z,t) = z/t to fill the
center wedge-shaped region.

t=0 t=05 t=1 t=15

0.5 0.5 0.5 0.5

-2 0 2 -2 0 2 -2 0 2 -2 0 2

Figure 22.4. Animation of the function u(z,t) in (22.2).

function u(z,t) is now piecewise defined by

0 ifx <0,
(22.2) u(x,t) =< x/t if0<z<t,
1 ift <z

The four frames of animation displayed in Figure 22.4 show that the
profile of the solution “thins out” or “rarefies” as time increases. Such
a function is an example of a rarefaction wave.

Note that although the function u(z,t) defined in (22.2) is contin-
uous for ¢ > 0, the derivatives u; and u; do not exist along the lines
z = 0 and x = t and so u does not satisfy the differential equation
u; + uugy = 0 at these points. This function, however, satisfies the
conditions to be a weak solution of u; + uu, = 0, as we will describe
later in Section 25.2.
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a X

Figure 22.5. Characteristics for a rarefaction wave u(z,t) =

9((z — a)/1).

In general, a rarefaction wave is a nonconstant function of
the form u(z,t) = g((z — a)/t). The lines (zx — a)/t = c in the
xt—plane are often called characteristics since u is constant along
them; however, they are not constructed by the characteristic equa-
tion dz/dt = c(u) derived from u; + c(u)u, = 0. These lines are
distinguished by their fan shape originating from the point £ = a on
the z—axis (Figure 22.5).

Exercise 22.2. Find a rarefaction wave solution of

u+ulug =0, —oo<z<o00,t>0,

(=.0) 1 ifz <0,
u(z,0) =
2 ifz>0.

22.2. Stopped traffic at a green light

Suppose traffic is backed up indefinitely in one direction behind a red
light. The light, located at position x = 0, turns green at time ¢t = 0
and the traffic begins to move forward. As shown in Figure 22.6, it
will be assumed that prior to the changing of the light, traffic behind
the light is at its maximum density u; and no traffic exists ahead of
the light.

Using the constitutive equation ¢ = v;(u — u?/u;) derived from
the linear velocity model v = v1(1 — w/u;), an initial value problem
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Stopped Traffic No Traffic Ahead of Light
KK KK XK XK XK XK XK
u, cars/mile 0 cars/mile

Figure 22.6. Traffic stopped at a red light.

which describes the traffic density u after the light turns green is
ur +v1(1 —2u/u)uy, =0, —oco <z <oo,t>0,
22.3 if x <0,
(22.3) w(e0) = 41 oS
0 ifz>0.

The characteristic lines for this initial value problem are of the form
z = c(u(zg,0))t + 2o with ¢ given by c(u) = v1(1 — 2u/uy). Charac-
teristics which start at points (xo, 0) on the negative z—axis (zo < 0)
have speed
c(u(zo,0)) = c(ur) = v1(1 — 2uy fuy) = —vy,
while those starting at points on the positive z—axis have speed
c(u(zo,0)) = c(0) =v1(1 = 0) = v;.

The resulting characteristic lines are then

r=—-unt+zy ifzo<O0,

T =vit+xg if zg > 0.
The characteristic diagram shown in Figure 22.7 separates into three
parts: = < —uit, —u1t < x < vit, and > vit. No characteristics
enter the middle region; however, as shown in the following exercise,

a rarefaction wave can be constructed to fill this wedge-shaped area.
The resulting rarefaction wave solution is then

U1 if x < —wit,
(22.4) u(z,t) = { tuy (1 - ﬁ;) if —vit <z <oyt
0 if £ > vt

Exercise 22.3. Construct the rarefaction wave solution (22.4) of the
initial value problem (22.3) by using the method of characteristics in
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x=-vt x=yt
u(x,0) = 1 u(x0,0) =

Figure 22.7. Characteristic lines of the initial value problem (22.3).
the regions ¢ < —vit and « > vit, and filling the middle wedge-shaped
region —vit < x < vit with a rarefaction wave.

Exercise 22.4. By picking values for u; and vy, construct a specific
example of the solution (22.4) and animate the result.

Exercise 22.5. In the zt—diagram of the function (22.4), what do
the lines x = —wv1t and = = vyt represent in terms of the traffic?
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Chapter 23

An Example with
Rarefaction and
Shock Waves

In general, nonlinear conservation laws may possess solutions which
are constructed using a combination of shock and rarefaction waves.
In this chapter we will construct an example of such a solution.

Consider the initial value problem for Burgers’ equation

ur +uu, =0, —oco<zx <00, t>0,
1 <
(23.1) 0 ifz<0,
u(z,0)=<¢1 if0<z<l,
0 ifz>1.

With ¢(u) = u, the characteristics * = c(u(xo,0))t + xo are

r=0-t+xg ifzg<O,
r=1-t+zy ifO0<zy<l,
r=0-t+x9 if zg>1.

The characteristic diagram shown in Figure 23.1 has intersecting char-
acteristics as well as a wedge-shaped region with no characteristics.
Since u is constant along characteristics lines, the initial condition and
the characteristic diagram show that u(z,t) = 0 for z < 0, u(z,t) =1

173



174 23. An Example with Rarefaction and Shock Waves

7

Figure 23.1. Characteristics of the initial value problem (23.1).

1 X

usg

R

=0

u(xp,0)=0 u(xp,0) =1 1 u(xp,0)=0

X

Figure 23.2. The value of u is constant along characteristics
in regions of single characteristics.

for0<t<az <l and u(z,t) =0for 0 <t <z —1< oo (see Fig-
ure 23.2). A piecewise smooth solution to (23.1) will be completed
using a combination of shock and rarefaction waves in the remaining
regions of the zt—plane.

Step 1: A rarefaction. We will begin by constructing a rarefaction
wave to fill the wedge-shaped region in the xt—plane that does not
contain any characteristic lines. As shown in Section 22.1, a rarefac-
tion wave solution of u; + uu, = 0 with a fan of characteristic lines
originating from (0,0) is

T
U(l‘,t) = ?
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9
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x

Figure 23.3. Characteristics of the rarefaction u(z,t) = z/t
fill the wedge-shaped region originating from the origin.

.....

«

U(x0.0) =0 ur0)=1 " uxp0)=0 *

Figure 23.4. The zt—diagram of the solution including the
rarefaction wave.

Drawing a fan of characteristic lines for this rarefaction in the trian-
gular wedge results in the characteristic diagram shown in Figure 23.3
and the updated zt—diagram in Figure 23.4.

Exercise 23.1. The characteristic diagram in Figure 23.3 shows a
region of intersecting characteristics near the r—axis. Sketch a pos-
sible shock path in Figure 23.3 starting at the point (1,0).

Step 2: A shock. The diagram in Figure 23.3 shows intersecting
characteristics with a breaking time of ¢, = 0. The next step will be
to construct a shock path, starting at the point (x,t) = (1,0), which
separates the characteristics x = t + xg from the vertical lines x = xg.
With the flux ¢(u) = %ug from Burgers’ equation u; + uu, = 0, the
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r/}
4

V

1 2 B

Figure 23.5. Shock path zs(t) = 3t+ 1 for 0 < ¢t < 2
separates a region where u(z,t) = 1 from a region where
u(z,t) = 0. The shock path will need to be extended be-
yond the point (2,2) into the region of characteristics from
the rarefaction wave.

Rankine-Hugoniot jump condition for the shock path becomes

do, _[¢] _ 3(u)? - 5(u)? _wttum

dt  [u] ut —u~ R

The characteristics left of the shock path extend back to points (zg, 0)
on the r—axis where 0 < xg < 1. The value of u(x,t) along these
lines will be u(z,t) = u(zp,0) = 1, so the value of u(z,t) as (z,t)
approaches the shock path from the left is v~ = 1. Similarly, the
characteristics to the right of the shock path are vertical lines which
extend back to points (zg,0) on the z—axis where zg > 1. The value
of u(z,t) along these lines will be u(z,t) = u(zp,0) = 0, so the value
of u(z,t) as (x,t) approaches the shock path from the right is u* = 0.
The jump condition for the path then becomes

des _ ()+(0) 1

dt 2 2
which gives z5; = %t + k. The constant k is found using the condition
that the shock starts at (xs,¢) = (1,0). In this case k = 1, and the
resulting shock path is

B St G<E<Y

As shown in Figure 23.5, this part of the shock path ends at ¢t = 2,
where the vertical characteristics begin intersecting the characteristics
inserted for the rarefaction wave.
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Step 3: Extension of the shock. The shock path constructed in
Step 2 separates the characteristics x = t + xo from the vertical lines
x = xo. As a final step in the construction of u(z, t), the shock will be
extended from (z,t) = (2,2) into the region ¢ > 2 where the vertical
lines £ = xo intersect the fan of characteristics from the rarefaction
wave (Figure 23.5).

As in Step 2, the jump condition for the shock path is
dzs _ ¢l _ 3(u)? - 5(uT)? _ wt4u”

dt  [u] ut —u~ 2

The characteristics to the right of the shock are vertical lines which
extend back to points (zg, 0) on the z—axis with zo > 1. The value of
u(z, t) along these lines will be u(z, t) = u(xo, 0) = 0, so the value of
u(x,t) as (z,t) approaches the shock path from the right is u™ = 0.
To the left of the path, we have already determined that the value of
u is u(x,t) = x/t from the rarefaction wave, so the value of u(z,t)
as (z,t) approaches the path from the left is = = z/t. The jump
condition for points on the shock path is then

drs  O+x,/t Ts

a2 2t
This first order differential equation for x, is separable; rewriting the
equation as

1 dx, 1

T, dt ot

and integrating shows that lnzs = In Vit + k, and so =5 = k1t for
some constant k;. Since this part of the shock path starts at the point
(z,t) = (2,2), the condition x,(2) = 2 determines that k, = /2, and
so the shock path here is

zs =2t t>2.
As shown in Figure 23.6, this curve separates the region of rarefaction

characteristics from the vertical characteristics for time ¢ > 2.

The characteristic diagram in Figure 23.6 completes the construc-
tion of a piecewise smooth solution to the initial value problem (23.1);
the final xt—diagram of the solution is shown in Figure 23.7. During
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Figure 23.6. Extending the shock path by s = v/2t fort > 2
to separate the region of rarefaction characteristics from the
vertical characteristics.

t N\

Figure 23.7. An gt—diagram for a function u(z, t) consisting
of a shock and a rarefaction.

the first two units of time, the profile of u(z,t) is given by

0 ifx <0,

z/t f0<z<t,
ift<x<jt+1,

0 ifit+l<ua.

(23.2) u(z,t) =
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Once past time ¢t = 2, the profile of u(z,t) is defined by

0 if £ <0,
(23.3) u(z,t) =4qz/t if 0 <z < V2,
0 if V2t < .

Exercise 23.2. By taking slices of the xt—diagram shown in Fig-
ure 23.7, sketch the profile of u(x,t) at times t = 0,0.5,1, 1.5,2,2.5, 3.
In particular, notice (a) the formation and “thinning out” of a rar-
efaction wave starting at time ¢t = 0, and (b) the movement of a shock
discontinuity.

Exercise 23.3. Piecewise defined functions can be animated using
the Heaviside function,

Hz) 1 ifz >0,
xTr) =
0 ifz<0.

For example, during the first two units of time, the function u(zx,t)
defined by (23.2) can be represented as

w(z,t) = (z/t)H(z)H(t — ) + H(z — )H(t/2 + 1 — z).

Using the Heaviside function, animate the function u(x,t) defined in
(23.2) and (23.3).

Exercise 23.4. Suppose that uniform traffic with density wug cars
per mile approaches the end of a line of traffic stopped at a red light.
Ahead of the light there are no cars, while the stopped traffic is at
its maximum density u; cars per mile. At time ¢ = 0, the red light
turns green and the front of the line of stopped traffic begins to move
forward. One model for the resulting traffic density is

ug +v1(l —2u/ur)u, =0, —oco<x<oo,t>0,
uy ifx<—L,
u(z,0)=<¢u; if -L <z<0,
0 ifzxz>0.

(23.4)

Assume that the incoming traffic has a density of ug = %ul.
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(a) Show that the characteristics for the initial value problem
(23.4) are given by
T =uvit+ xo if 0 < xo,
r=-—-wunt+xzg if —L<xz9<0,
T =10 if g < —L.
Sketch the resulting characteristic diagram.

(b) Find a solution u(z, t) of the initial value problem (23.4) using
a combination of shock and rarefaction waves.

(¢) The companion MATLAB software (page xiii) includes a script
wvtraf for animating the solution of this traffic flow problem.
At the MATLAB prompt, type wvtraf and use the graphical
interface to animate the solution from part (b).



Chapter 24

Nonunique Solutions
and the Entropy
Condition

Rarefaction and shock waves are special solutions of conservation laws
that exhibit wave behavior. In the process of constructing them,
however, we have relaxed the notion of “solution” from a function
u(z, t) which satisfies us + ¢, = 0 for all (z,t), to a piecewise smooth
solution which satisfies the integral form of the conservation law where
u is not continuous. In this chapter, we will see that this more general
notion of solution makes it possible for an initial value problem to
possess many different solutions. The entropy condition will then be
introduced as an example of a condition which is used to select one
solution over all others.

24.1. Nonuniqueness of piecewise smooth
solutions

The rarefaction wave from Section 22.1,

0 if z <0,
(24.1) u(z,t) =L z/t f0<z<t,
1 if x>t

181
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2 x=%(A+l)t

Figure 24.1. A shock wave solution of the initial value prob-
lem (24.2) with two shock peths.

was constructed as a piecewise smooth solution of the initial value
problem

us +uuy, =0, —oco<x<oo,t>0,

24.2 if x <
( ) u(z, 0) = 0 ifz <0,
1 ifz>0.

It is also possible, however, to find other solutions of this problem
using shocks waves. In fact, if A is any number satisfying 0 < A < 1,
then the function

0 ifx< At
(24.3) u(z,t) =4 A if At <z < (A + 1)L,

1 if A+ 1)t <z,
represented by the xt—diagram in Figure 24.1 is a shock wave solution
with two shock paths (see Exercise 24.1). Thus there are many solu-

tions of the initial value problem (24.2)—a rarefaction wave solution
and an infinite number of shock wave solutions.

Exercise 24.1. Consider the function u(z,t) given by (24.3).
(a) Verify that u(x,t) satisfies u; + uu, = 0 in each of the three
regions ¢ < 1At, 1At <x < $(A+1)t, and z > L(A+ 1)t.

(b) Verify that the paths of discontinuity z, = 1At and z, =
%(A + 1)t satisfy the Rankine-Hugoniot jump condition.
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24.2. The entropy condition

When an initial value problem has more than one solution, additional
information must be specified if one particular solution is to be se-
lected. In gas dynamics, for example, the entropy condition is used
to select a solution which is most physically realistic.

A function u(z, t) satisfies the entropy condition if it is possible
to find a positive constant E so that

u(z + h,t) — u(z,t)
h
for all ¢t > 0, h > 0, and z. Graphically, this is a condition on the

slope of the profile of u(z,t) at each time t—the slope between any
two points on the profile (secant slope) at time ¢ is less than E/t:

E
<=
—t

u

Slope u(x+h,t)-u(x,t)

1

t +—
x x+h X

Note that this condition restricts how large the positive secant slope
can be, and does not prohibit the curve from having steep negative
slopes. Furthermore, the bound E/t restricting the size of positive
slopes decreases to zero as t increases.

For the initial value problem (24.2) in the previous section, there
are an infinite number of shock wave solutions given by (24.3). Fig-
ure 24.2 shows the profile of these solutions, and indicates that large
positive secant slopes are possible by picking x and x + h on opposite
sides of the shock. The secant slope

u(x+h,t) —u(x,t) 1-A
h h

grows arbitrarily large as x and = + h approach the location of the
jump, so it is not possible to find a constant F such that this secant
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1 Il g
T T

x x+h

=

Figure 24.2. Large positive secant slopes occur in the profiles
of the shock wave solutions (24.3).

/06 Maximum secant slope %

o
L I
T T 1
X x+h t

X

Figure 24.3. Maximum positive secant slope is 1/t in the
profiles of the rarefaction wave (24.1).

slope is less than E/t for all z and h > 0. The shock wave solutions
(24.3) do not satisfy the entropy condition.

The rarefaction wave (24.1), however, does satisfy the entropy
condition. The profile of this function at time ¢ shown in Figure 24.3
indicates that a maximum positive secant slope of 1/t occurs when z
and x+h are between 0 and t. For this function the entropy condition
is met by picking E = 1, since

u(z + h,t) — u(z,t) < 1
h -t
The entropy condition would then select this rarefaction wave solution
over the shock waves solutions in the initial value problem (24.2).

The entropy condition plays an important role in the design of
numerical methods for constructing approximations to solutions of
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conservation laws. Since a conservation law may possess several so-
lutions, care must be taken to ensure that the numerical method not
only converges, but converges to the desired solution. For further
reading on the entropy condition, its variations, and its role in nu-
merical algorithms, see either [LeV] or [Smo].
Exercise 24.2. Find a rarefaction wave solution for
u+wluy, =0, —oo<z <00, t>0,
1 ifx<0
u(m ) 0) = . -7
2 ifz>0,

and sketch a profile of u(x,t) at time t. What is the maximum secant
slope of this profile? Does this rarefaction wave solution satisfy the
entropy condition?

Exercise 24.3. Find a rarefaction wave solution for
ut+u2uz:0, —oco<x <oo, t>0,
0 ifx<0,
u(x,0) = T
1 ifz>0.

Does this rarefaction wave solution satisfy the entropy condition?
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Chapter 25

Weak Solutions of
Conservation Laws

25.1. Classical solutions

Constructing solutions of conservation laws by piecing together shocks
and rarefactions can become quite tedious if the initial condition is
anything more than a very simple function. Furthermore, construct-
ing a particular solution is sometimes not as important as determining
more general properties of the conservation law. In this chapter the
weak form of a conservation law is introduced as an alternative to
the differential equation form u; + ¢, = 0. This view of the conser-
vation law has several mathematical advantages over the differential
equation form.

The solutions of differential equations that we have focused on
are often called classical solutions in order to distinguish them from
the weak solutions described in the next section. Consider the general
initial value problem

us + ¢, =0, —oco<zx<oo,t>0,

u(m,O) = uO(x)y

where ¢(z, t) has continuous first derivatives and ug(z) is continuous.
A function u(z,t) is called a classical solution of this initial value
problem if (a) w is continuous for all z and ¢t > 0, (b) u, and u; exist
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and are continuous for all z and t > 0, (c) u satisfies us + ¢, = 0 for
all z and ¢t > 0, and (d) u(z,0) = up(z) for all z.

The notion of weak solution will allow us to proceed directly to
functions u(x, t) which are not necessarily continuous or differentiable,
but are solutions in a different sense.

25.2. The weak form of a conservation law

The weak form of uy + ¢, = 0 is an alternative integral form of the
conservation law. The underlying idea is to use special functions of
x and t, called test functions, to examine the solution of u; + ¢, =0
in regions of the xt—plane. A real valued function T'(x,t) is called a
test function if

(a) T and T, exist and are continuous for all (x,t), and

(b) there is some circle in the xt—plane such that T'(z,t) = 0 for
all (z,t) on or outside the circle.

An example of a test function is

T(z.t) = exp(l_;fl_tf) if 22 4+¢2 < 1,
’ 0 if 22 + 12 > 1,

whose graph is shown in Figure 25.1. The exponential decay of T'(x, t)
to zero as (x,t) approaches the boundary of the circle z?+t? = 1 from
the inside leads to this function having continuous first derivatives T
and T, for all (z,t), even on the unit circle.

To derive the weak form of a conservation law, begin by assuming
that u is a classical solution of

(25.1a) U+ ¢y =0, —o00<z <00, t>0,
(25.1b) u(z,0) = uo(z),
and let T'(z,t) be any test function. The product T'(z, t)u(z,t) is now

a function which is zero at every point (z,t) on and outside a circle
in the xt—plane, so this product isolates a portion of u.
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Figure 25.1. A test function.

Multiplying the differential equation (25.1a) by T'(z,t) and inte-
grating over all possible z and all ¢t > 0 gives

(25.2) /0 ” /_ " e, T (2, 8) + 6o, 0T (x, &)] dadt =

The left side can be written as the sum of two integrals I; and I,

where
I = / / (z,t)T(x,t)dzdt,

I =/0 [m ¢z (z,t)T(z, t)dzdt.

Interchanging the order of integration in the double integral I; and
applying integration by parts to the resulting inside integral rewrites
I 1 as

I, = /_Z [/000 u(z, t)T(x,t)dt] dz

= /oo {u(x,t)T(m, t)|z:0°° -~ /000 u(x,t)Tt(x,t)dt] dz.

The value of u(z,t)T'(z,t) is zero as t — oo since T'(z, t) is zero for all
(z,t) outside some circle in the xt—plane. The value of u(zx,0)T'(z, 0)
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is ug(z)T'(z,0) by the initial condition (25.1b). The expression for I
is then

(25.3) I =— /oo uo(z)T (z,0)dx — /oo /oo u(z, t)Ty(x, t)dzdt.
—o0 0 — 00

A similar calculation can be carried out for I5. Applying integration
by parts to the inside integral of the double integral I results in

I = /Ooo [/_O; qﬁz(a:,t)T(ac,t)da:] dt
= /Ooo [qﬁ(a:, )T (x,t) i:oooo / oz, )Ty (z, t)da:} dt.

The value of u(x,t)T(z,t) is zero as x — oo since T'(z,t) is zero for
all (x,t) outside some circle in the xt—plane, so

(25.4) I, = _/000 /OO o(z, )Ty (x, t)dzdt.

Using the two calculations (25.3) and (25.4) for I; and Iy, the integral
of the conservation law u; + ¢, = 0 in (25.2) can be rewritten as

/ / u(z, )Ty (z, t) + ¢(z, 1) T (x, t)) dadt
(25.5)

+ /OO uo(z)T (x,0)dx = 0.

— 00

This is called the weak form of the initial value problem (25.1) for
the conservation law u; + ¢, = 0.

Note that the weak form (25.5) does not involve any derivatives
of u(x,t). A weak solution of the initial value problem (25.1) is a
function u(x,t) which satisfies (25.5) for every test function T'(z,t).
For a weak solution there is no requirement that u; or u, even exist.
Furthermore, the partial differential equation and the initial condition
in (25.1) are both accounted for in this single equation.

Example 25.1. Consider the initial value problem

ut—l—uzuz:O, —oco<x<oo,t>0,
1

u(z,0) = 52
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The flux for this conservation law is ¢(u) = u®/3. Taking this flux
and the initial function ug(x) = 1/(1 + 22) in (25.5) gives the weak
form of the initial value problem as

/ / u(z, )Ty (z,t) + 3u(z, t) T (x, t)) dadt

* T(x,0),
—!—/_oo 1+£E2da:—0

for all test functions T'(x,t).

Exercise 25.2. Find the weak form of the following initial value

problems:
2

(a) u +uug =0, u(z,0) =e""".
2 ifz<0,
(b) we + (€")e = 0, u(z,0) =4~ = F=
1 ifxz>0.

max ‘f S 0?
(¢) ut + Vmaz(l — 2u/Umaz)uzs = 0, u(z,0) = Y l x
Uug ifz>0.

Exercise 25.3. By following the derivation of (25.5), show that the
weak form of us + ¢, = f is

/ / (e, T4z, 8) + (z, )T (z, ) + f(z, )T (z, 1)) dzdt
+ /00 uo(z)T (z,0)dx = 0.

— 00
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